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ABSTRACT 

Weak- (Reillex 425 and Riedel-de-Haen VI-15), moderate- (Dowex MWA-1, 

Dowex WGR-2, Dowex XUS-40283, and Dowex XUS-43432), and strong- (Dowex 

XUS 40196 and Amberlite IRA-958) base resins were evaluated for their sorption 

capacities of lactic acid from solutions with different pHs. Composite isotherms and 

fixed-bed sorption Indicated that the sorption capacities of weak- and moderate-base 

resins decreased markedly as the pH of the feed exceeded the pKg of lactic acid. The 

decrease in capacity was mainly due to the decrease in concentration of undissociated 

lactic acid as the pH of the feed increases. The strong-base sorbents exhibited 

significantly higher sorption capacities for free lactic acid than for lactate. The higher 

capacities at low pHs were due to the swelling of the resin, thus exposing more 

sorption sites and creating more space for sorption. The capacity of strong-base resin 

in fixed-bed sorption remained constant from pH 2 to 6. 

Riedel-de-Haen VI-15, Dowex MWA-1 and Amberlite IRA-35 were employed in 

a lactic acid recovery scheme using model fermentation broth. The starting broth (pH 

4.5) contained 1% yeast extract, 10% ammonium lactate and 1% glucose. The broth 

was acidified by using cation exchange resin (Duolite C-464) in form, producing 0.4 

bed volume (BV) of acidified broth. The acidified broth (pH 2.9) containing 6% lactic 

acid and 0.7% glucose was passed through the column until the basic sorbent was 

saturated. The sorbed lactic acid in the column was eluted using methanol or 5% 

NH4OH. Lactic acid was completely recovered from VI-15 column after 7 BV of 

methanol while only 64% was recovered from MWA-1 after 4.5 BV. The 5% NH4OH 
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eluted all lactic acid from MWA-1 column in 1.5 BV with a maximum effluent 

concentration of 115 mg/mL. High-purity, heat-stable lactic acid was recovered from 

Riedel-de-Haen VI-15 when the broth was treated with activated carbon and styrene 

divinylbenzene resin before the acidification step using a strong cation exchanger in 

H"" form. The lactic acid obtained from real fermentation broth was also high in purity 

but not heat-stable. 
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I. INTRODUCTION 

As the world's crude oil resources diminish and the prices of petroleum 

products continue to increase, the production of chemicals by biological processes is 

becoming more competitive. Lactic acid has been produced by femnentation for over a 

century, but obtaining pure and heat-stable lactic acid cheaply remained a big 

problem. The huge demand for heat-stable lactic acid prompted the commercial 

production of lactic acid by chemical synthesis fifty years ago (Benninga, 1990). The 

usage of lactic acid in food and industrial applications has reached a standstill and it 

has remained as a specialty chemical. 

The use of polylactic acid (PLA) for biodegradable plastics and controlled-

release drugs and pesticides are potential multimillion dollar markets (Lipinsky and 

Sinclair, 1986). The commercial success of PLA, however, hinges on the cost of 

producing heat-stable lactic acid. Therefore, one of the major challenges in lactic acid 

production is to reduce the cost of acid recovery and purification, which could amount 

to almost 50% of the final product cost. 

Adsorption is a process suitable for recovering substances produced in dilute 

concentrations and complex aqueous solutions such as fennentation broth. Because 

the adsorption of solutes can be selective, preliminary purification is also performed at 

the same time. The polymeric sorbents are non-toxic to microorganisms, thus it can 

be used directly in the fermentor. The manufacture of lactic acid currently uses 

adsorbents mainly for demineralization of thin crude lactic acid. 
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Lactic acid fermentation is usually conducted at pHs between 4.5-6. This is 

done by adding an alkali to neutralize the acid as it is produced. The lactic acid in the 

broth is, therefore, produced as a salt of the base used (lactate). A strong-base ion 

exchanger appears to be the obvious choice because it adsorbs lactates. Recovering 

lactate from the sorbent, however, requires a stronger desorbent. For example, if 

NaOH is used, the product is sodium lactate. But, if the desired product is the acid, 

further processing is necessary. Weak-base adsorbents, on the other hand, adsorb 

only free lactic acid; therefore, they are not effective at pHs where only lactates are 

present. Acidifying the broth with mineral acids will only introduce competing acids. 

The advantage of weak-base sorbents is that the free lactic acid adsorbed is easily 

recovered by using alcohols (e.g., methanol and ethanol) or acetone. An acid product 

is produced after evaporating the alcohol or acetone. Concentrating lactic acid is also 

cheaper since the low-boiling solvents require less energy to evaporate than water. 

The solvents, in turn, can be recycled, thus no regenerant is wasted. Another concern 

in using polymeric adsorbents is fouling. The broth contains numerous potential 

fouling substances that can reduce the sen/ice life of the adsorbents. 

Research Objectives 

The main objective of this research was to investigate the use of weak-base 

polymeric adsorbents in the primary recovery and/or purification of lactic acid from 

fermentation broth. The specific objectives were: (1) to evaluate the ability of the 

weak-base sorbents to recover and produce purified lactic acid; and (2) to develop a 

process that would avoid or minimize generating salt in the waste stream. 
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Explanation of Dissertation Format 

This manuscript is divided into six chapters. The general introduction, 

statement of the problem, and research objectives are presented in Chapter I. The 

review of literature pertinent to this research is in Chapter II. The methodology 

(Chapter III) was divided into three sections and the results and discussion (Chapter 

IV) was presented in the same order as in Chapter III. Each section in the results and 

discussion includes a summary. A separate overall conclusion is provided in Chapter 

V. The recommendations for future work are in Chapter VI. The literature cited in this 

manuscript are listed in references section. The data used in making the figures and 

tables are in the appendix. 
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II. REVIEW OF LITERATURE 

Properties of Lactic Acid 

Lactic acid (2-hydroxypropionic acid) was first discovered in sour milk by Car! 

Wilhelm Scheele, a Swedish scientist, in 1780 (Holten, 1971). It is a naturally-

occurring organic acid, commonly present in many fermented products, and is a 

constituent in animal blood and muscle tissue. It occurs as dextrorotatory L(+) lactic 

acid, as levorotatory D(-) lactic acid, or as a mixture of both isomers in varying 

proportions (Figure 2.1). Lactic acid is soluble in water and alcohol, less soluble in 

ether, and practically insoluble in chloroform, petroleum ether and carbon disulfide. 

Other physical properties of interest are listed in Table 2.1. 

a b 

Figure 2.1. Models of (a) L-(+)-, and (b) D-(-)- lactic acid (Holten, 1971) 
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Table 2.1 Physical properties of lactic acid® 

Molecular weight 90.08 

Melting point, D(-) or L(+) 52.8-54°C 

Boiling point (at 14 mm Hg) 122°C 

Dissociation constant (K) 1.37 X 10"^ 
at 25°C 

Density at 25°C 1.221 g/mL 

Viscosity (88.6% aqueous 36.9 cp 
solution) at 25°C 

" Holten, 1971 

Lactic acid is available in technical, food (FCC), and phamnaceutlcal (USP) 

grades and is commonly sold as 50% or 88% aqueous lactic acid solution. The price 

of 88% food-grade and technical-grade lactic acid are $1.15 and $1.12 per pound, 

respectively (Chemical Marketing Reporter, 1994). Crystalline lactic acid is difficult to 

produce. It is not stable at room temperature because it readily forms intermolecular 

esters, releasing water in the process in amounts sufficient to completely solubilize 

lactic acid. At concentrations greater than 20%, the lactic acid solution is a mixture of 

polylactic acid having varying lengths (Figure 2.2). 

Uses of Lactic Acid 

Lactic acid was commercially produced by fermentation from 1881 to 1949. 

Early uses include deliming of hides in leather manufacture, dyeing and printing of 

textiles, and 'brightening' of silk and rayon. Lactic acid is also used in treating metal 

surfaces and electrostatic painting. In plastics manufacture, lactic acid is used 
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•/. 
100 

A - Free lactic acid 

B - Total lactic acid 

C - Lactoyllactic acid 

D - Lactoyliactoyilactic acid 

E - Sum of higher polylactic acid 

75 

50 

25 

0 
0 25 50 75 100 125 V. 

Figure 2.2. Composition of aqueous lactic acid (concentrations in per cent by weight) 
(Hoiten, 1971) 

in controlling the pH in the film-coating bath for cellophane films, and in the production 

of phenol-formaldehyde resins and polyesters (Vickroy, 1985). In pharmaceutical 

products, lactic acid has been used in preparation of buffer solutions, ointments, and 

cosmetic products. 

In 1950, the United States started synthetic lactic acid manufacture to meet the 

demand for heat-stable lactic acid (Benninga, 1990). The food-grade lactic acid 

produced by fermentation was not suitable for "Ven/" (stearoyl-2-lactylate, an 

emulsifier and dough conditioner) manufacture because the residual sugars, proteins 

and other readily-carbonizable substances, and the high reaction temperature required 
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in the process produced a dark-colored product. About 20% of the total lactic acid 

produced is converted into stearoyl-2-lactyiate and over 50% is used by the food 

industry as an acidulant and presen/ative. Lactic acid can also be converted to 2,3-

pentanedione, a high-value flavoring ingredient (Miller et al., 1994). 

Another application of lactic acid with huge market potential is in the 

manufacture of poly(lactic acid) (PLA), a biodegradable thermoplastic polymer. This 

biocompatible polymer is currently used in medical applications such as prosthetic 

devices, resorbable sutures, and implants. PLA, in combination with other 

copolymers, has huge potential in biodegradable plastics application. Because PLA is 

currently made from high-purity lactic acid, its cost is prohibitive and cannot compete 

with the cheaper petroleum-based plastics (Lipinsky and Sinclair, 1986). 

Lactic Acid Manufacture 

Lactic acid is commercially produced either by fermentation or by synthesis. As 

of 1989, total world production was over 30,000 tons/year, of which about 55% is from 

fermentation. Most of the lactic acid produced in the United States is from a synthetic 

process (Benninga, 1990). 

Fermentation 

Biosynthesis of lactic acid from glucose or glycogen does not require oxygen. 

In animals, plants, and aerobic microorganisms, the anaerobic conversion of glucose 

or glycogen to pyruvic acid is called glycolysis. The pyruvic acid is then converted to 

lactic acid by lactate dehydrogenase; which also converts NADH to NAD. This 
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process is known as lactic fermentation (Holten, 1971). Lactic acid fermentation that 

yields 2 lactic acid per glucose is considered homolactic fermentation {Pediococcus, 

Streptococcus, Leuconostoc, and some Lactobacillus). Lactic fermentation that 

produces other by-products (e.g. acetic acid, ethanol, and COg) In about equal molar 

concentrations is called heterolactic fermentation (some Lactobacillus) (Buchta, 1983). 

The homofermentative organisms are employed for lactic acid manufacture. The 

specific strains of these microorganisms used in the industry are proprietary, but some 

general principles of strain selection are known. The selection of microorganism 

depends primarily on the carbohydrate to be fermented. For glucose, L. delbrueckii is 

commonly used. For whey, L. bulgaricus is the bacterium of choice as it is able to 

ferment lactose efficiently (Vickroy, 1985). The high salt content of whey, however, 

results in higher purification cost. 

A large number of carbohydrate-containing substances have been used in lactic 

acid fermentation. Some common carbohydrate sources are sucrose from cane and 

beet sugar, lactose from whey, and maltose and glucose from hydrolyzed starch. 

Refined sucrose, although the most expensive, is the most commonly used substrate, 

followed by dextrose (Vickroy, 1985). The use of 12-18% sucrose results in the purest 

medium and the lowest cost for product isolation (Buchta, 1983). Nitrogenous 

components, such as malt sprouts, malt extract, corn steep liquor, barley, yeast 

extract, or undenatured mild must, are used to supplement most carbohydrate sources 

to give rapid and luxuriant growth. In commercial practice, minimal amounts of these 

substances are used to simplify the recovery process. 
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Batch fermentation is the method used commercially. Fermentor volume 

ranges from 20-100 m^. The fermentation conditions vary depending on the 

microorganism used. For L debrueckii, the temperature ranges 45-55°C and the pH 

between 5-6. The acid formed is neutralized by calcium hydroxide or calcium 

carbonate, either added in little excess at the beginning of the fermentation or added 

intermittently during the fermentation in response to pH or acid measurements. The 

fermentation takes two to six days to metabolize 15% glucose or sucrose or one to 

two days for 5% lactose. The rate of acid production varies from 1-3 kg/m% with a 

yield of 90-95% based on initial sugar or starch concentration. The residual sugar is 

about 0.1% and the cell mass ranges from 15% to as high as 30% depending on the 

initial sugar concentration and the bacteria employed (Vickroy, 1985). 

Recovery and purification processes 

Various recovery and purification schemes used in industry were discussed by 

Vickroy (1985) and Benninga (1990). The first step in all recovery processes is to 

raise the broth's temperature to 80-100°C and increase the pH to 10-11 (using 

Ca(OH)2) to inactivate the microorganisms, coagulate the protein, solubilize calcium 

lactate, and degrade some of the residual sugars. The cells and coagulated protein 

are removed by filtration to produce a crude lactic acid extract. This crude extract is 

processed further by any of the following methods. 

Filtration, carbon treatment, and evaporation. Activated carbon is mixed 

with the crude extract to remove the colored components. The spent carbon is then 
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filtered out and the filtrate is sent to the evaporator where excess water is evaporated 

under mild vacuum at moderate temperature (0.57 atm and 70°C) to 37% calcium 

lactate concentration. This preparation is then acidified with 63% sulfuric acid to 

precipitate calcium sulfate, which is filtered out. The lactic acid is bleached a second 

time and then evaporated to 52 or 82% concentration. Food-grade lactic acid is 

treated with sodium sulfide to remove heavy metals and is bleached again before 

packaging. This process produces only food-grade and technical-grade lactic acid. It 

is also energy-intensive because the concentration process relies heavily on 

evaporation of excess water. Furthermore, large amounts of salt (CaS04) are also 

produced, which create a big waste disposal problem. 

Calcium lactate crystallization. The crude extract is bleached with 

activated carbon and then acidified slightly before undergoing a second bleaching. 

Excess water is evaporated under vacuum to obtain a density of 1.12 kg/m®. At this 

concentration, calcium lactate crystallizes upon cooling. The crystals may be 

redissolved, treated with sodium sulfide to remove heavy metals, bleached, and 

recrystallized to improve purity. The product is low in residual sugars but may contain 

ash, which is mainly calcium sulfate. The yield is 75% based on crude calcium 

lactate. This rather low recovery is due to losses that occur during the washing step. 

Liquid-liquid extraction. The crude extract is filtered, acidified with sulfuric 

acid and the resulting calcium sulfate precipitate is filtered out. The crude lactic acid 

is bleached with activated carbon and the heavy metals, calcium, and amino acids are 
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removed by ion exchange. Excess water is evaporated under vacuum to about 44% 

lactic acid concentration before it enters the countercurrent extraction columns. The 

lactic acid is extracted by diisopropyl ether in the first countercurrent extraction 

column. The extracted aqueous solution still contains 20% of the total lactic acid in 

the crude lactic acid, which can be concentrated further for technical applications. The 

acid is recovered from the solvent by countercurrent extraction into water in the 

second countercurrent extraction column. Finally, the remaining solvent is boiled off 

from the aqueous solution and the acid is concentrated by evaporating the excess 

water to obtain food-grade lactic acid. The product is relatively free from ash but may 

contain other impurities from raw materials. The extraction requires large amount of 

ether due to low partition coefficients. Use of reactive extractants, such as tertiary 

amines, coextract other broth components. Thus, extraction alone does not produce 

high-purity lactic acid. 

Esterification and distillation. This is a semi-continuous process for 

recovery and purification of lactic acid. Crude lactic acid is fed into a heated reactor 

where it reacts with methanol under the influence of small amounts of sulfuric acid. 

The molar ratio of lactic acid to methanol is kept at 1:1.5. The vapors distilling from 

the reactor consist of methyl lactate, methanol, and water, with traces of lactic acid. 

This mixture is introduced into the middle of a fractionating column. Methanol, the 

most volatile component, rises to the top of the column, and is collected, condensed to 

a liquid and returned to the reactor. The bottom fraction contains methyl lactate, lactic 

acid and water, which are collected in a kettle. Hydrolysis of the methyl lactate takes 



www.manaraa.com

12 

place in the fractionating column and is completed in the kettle. The methanol is 

boiled off and sent back to the reactor via the fractionating column. A more efficient 

esterification is now performed by using high-boiling alcohols (C4 or C5) (Cockrem 

and Johnson, 1993). This process is capable of producing high-purity heat-stable 

lactic acid but the production cost is still high. The distillation of lactic acid esters and 

its hydrolysis back to lactic acid and alcohol require a lot of energy. 

Synthesis 

In chemical synthesis lactic acid is produced from lactonitrile, which has the 

chemical formula CH3CHOHCN. The lactonitrile is a by-product from acryionitrile 

synthesis, and can also be made directly from acetaldehyde and hydrogen cyanide by 

the following reaction: 

CH3CHO + HCN —> CH3CHOHCN 

Lactonitrile is hydrolyzed by a strong acid such as HCI to produce lactic acid and 

ammonium chloride: 

CH3CHOHCN + ZHgO + HCI —-> CH3CHOHCOOH + NH4CI 

After the synthesis reaction, the lactic acid produced is isolated and purified by 

esterification and distillation processes as described previously. Methanol, hydrogen 
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cyanide and other innpurities are then removed by a combination of steaming, carbon 

treatment, and ion exchange (Van Ness, 1981). 

Other Processes in Recovery of Lactic Acid 

Other methods proposed include electrodialysis, adsorption, ion exchange, and 

chromatography. Only electrodialysis will be discussed in this section. The rest will 

be presented separately in succeeding sections. 

Electrodialysis or dialysis in the presence of electric field was also used in 

recovering lactic acid from fermentation broth. The apparatus was made up of anion 

and cation membranes arranged alternately between a cathode and an anode. The 

electric potential between the anode (+ charge) and the anions causes the anions to 

pass through the anion-permeable membrane. Similarly, the electric potential between 

the cathode (- charge) and the cations makes the cations to move through the cation-

permeable membrane. The anions get concentrated on the anode side and the 

cations on the cathode side. In water-splitting electrodialysis, a bipolar water-splitting 

membrane is incorporated. As a result, an acid is recovered on the anode side and a 

base on the cathode side (Glassner and Datta, 1992). The base can then be recycled 

to the fermentor for pH control. Since other anions also go with lactic acid, and other 

broth components end up in the product stream by diffusion, further processing is 

necessary to remove these impurities. Like other membrane processes, 

electrodialysis suffers from membrane fouling. Glassner and Datta (1992) reported 

that they were able to electrodialyze succinic acid from whole broth without 
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experiencing membrane fouling. The cost of building an electrodialysis unit for large-

scale operation is not economically feasible at this time. 

Synthetic Adsorbents 

The evolution of synthetic organic ion exchangers started when Adam and 

Holmes (1935) demonstrated that polar groups can be attached to phenol-

formaldehyde matrix, thereby creating both polymeric cation and anion exchangers. 

These materials were used in series for deionization process. Ion exchangers are 

now being used in a wide array of applications, from water treatment to recovery and 

purification steps in most biochemical processes. 

Polymeric adsorbents are classified based on the functionality of their polar 

groups and the structure of the matrix to which these groups are attached. Based on 

their polar group, the adsorbent could be a weak-acid or strong-acid cation exchanger, 

and weak-base or strong-base anion exchanger. In terms of matrix structure, the 

adsorbent could be gel-type or macroporous (also referred to as macroreticular 

depending on the manufacturer). 

Functional groups 

Weak-acid cation exchangers have carboxylic acid groups provided by 

polyacrylic or polymethacrylic acid (Figure 2.3). In strong cation exchangers, the 

functional group is sulfonic acid, which is bound to styrene (Figure 2.3). Weak-base 

adsorbents may have pyridine, imidazole (Figure 2.4), or tertiary amine (Figure 2.5) 

functional groups, the last group being the most common. Tertiary amines are 
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CHo CHo CHo 
I ® I ® I 

C —CHp -C —CHp —CH -CHp —C - CHo---
I ^1 I ^ 
COOH COOH COOH 
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(b) Polymethacrylic acid-DVB 
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Figure 2.3. 

(c) Sulfonic acid in styrene-DVB 

Chemical structures of cation exchange resins 



www.manaraa.com

16 

-CH -CH2 —CH -CH2 -

CH -CH2 -

(a) Polyvinylpyridine-DVB 
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I 
CONH 
I 

•••CH2 — CH 

(b) Vinylimidazole-methylene-bis-acrylamide 

Figure 2.4. Chemical structures of weak-base resins 
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(a) Tertiary amine-functionalized styrene-DVB 
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(b) Tertiary amine-functionalized acrylic acid-DVB 
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(c) Polyamine (Epichlorohydrin-ammonia copolymer) 

Figure 2.5. Chemical structures of weak-base resins with tertiary amine 

functionality 
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either bound to styrene or to acrylate or exist as a polyamine. The strong-base anion 

exchangers are of quaternary ammonium functionality (Figure 2.6). Quaternary 

amines are classified further into Type I and Type II. Type I has three alkyi groups 

attached to nitrogen while in Type II, one of these alky! groups is replaced with an 

alkyI alcohol. 

Matrix structure 

The three-dimensional structure of the matrix is imparted by the crosslinker 

that holds the polymers together. Divinylbenzene (DVB) is the most commonly used 

crosslinker. The degree of crosslinking is expressed in terms of percentage of 

crosslinker used in producing the resin. The degree of crosslinking determines the 

mesh width of the matrix and the swelling ability of the resin. Highly crosslinked 

polymers have good physical stability but suffer from slow kinetics (Helfferich, 1962; 

Dorfner, 1972)). 

The gel-type resin, especially the strong-base anion exchanger, becomes 

irreversibly fouled by humic acids, a high-molecular-weight electrolyte containing 

carboxylic and phenolic groups. The aromatic groups in the highly basic anion 

exchanger (styrene and DVB) have high affinity for aromatic groups in humic acid and 

fulvic acid. This affinity could not be overcome by caustic regeneration. When an 

aliphatic polymer was tried in place of styrene, the desorption was improved but the 

capacity for organic removal was reduced (Calmon, 1984). 
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(a) Quaternary amine in styrene-DVB (Type I) 

•••CH—CH2 -CH-CH2 

CH2 •••CH-CH2"-
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(b) Quaternary amine in styrene-DVB (Type II) 

Figure 2.6. Chemical structures of strong-base anion exchangers 
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Adsorption of Carboxyiic Acid on Basic Sorbents 

Kabawata et al. (1981) used dilute aqueous adipic acid (1.5 wt%) to investigate 

sorption characteristics of poly(4-vinylpyridine) (PVP) crosslinked with DVB. PVP 

exhibited significant binding capacity for adipic acid. Sorption capacities at 

breakthrough were scarcely affected by the presence of 1 M NaCI, 0.1 M Na2S04 or 

0.1 M HCI. In contrast, the sorption capacities of tertiary annine- and quaternary 

amine-functionalized resins (IRA-45 and IRA-400, respectively) decreased 

considerably when inorganic salts were present. PVP had a smaller capacity for 

adipic acid than IRA-45 or IRA-400, especially at equilibrium acid concentrations below 

0.01 M. They attributed this disparity to the stronger interactions of the acid with 

tertiary and quaternary amine groups than with the pyridyl group of PVP. IRA-400 in 

OH" form was also found to have higher capacity than its CI" form. No explanation 

was offered for this behavior. The sorbed organic acid on PVP could be recovered 

easily by methanol, acetone or 2-propanol, with most of the acid eluted in 2 bed 

volumes (BV) of eluant. 

Kabawata etal.'s (1981) study on sorption of monocarboxylic (formic, acetic, 

propionic, butyric, valeric, acrylic, methacrylic, lactic, and glycolic), dicarboxylic (adipic, 

malic, and maleic), and tricarboxylic (citric) acids on PVP revealed that the resin's 

capacity for these acids was a function of the pKg of the acids and the length of the 

aliphatic carbon chain. The adsorption capacities of aliphatic acids with similar pK^s 

increased as the length of the carbon chain increased, suggesting that, in addition to 

the acid-base interactions, hydrophobic interactions also play a role in the adsorption 

process. Most of the sorbed organic acids, except citric, maleic, and malic acids, were 
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easily eluted with 3 BV of methanol. Of the monocarboxylic acids, valeric acid was 

the easiest to elute, requiring only 1.9 BV of methanol. This behavior seems to 

confirm the hypothesis of hydrophobic interactions between acids and PVP resins. 

Chanda et al. (1985) studied the adsorption of formic, acetic, propionic, and 

butyric acids on polybenzimidazole (PBI) and PVP. At low acid concentrations, PBI 

exhibited higher sorption capacity than PVP, despite the fact that the total available 

capacity of PBI is smaller than that of PVP. The higher sorption capacity by PBI was 

attributed to the higher basicity of benzimidazole (Kb= 0.34 x 10'®) than that of the 

pyridine (Kb=1.7x10'®) in PVP. The acid-base interaction increases with the increase 

in strength of either the acid or the base, or both. PBI also had faster rate of sorption, 

and stripping, and regeneration are easily accomplished by using dilute NaOH. The 

sorption of formic, acetic, propionic, and n-butyric acids on weak-base resins 

decreased significantly at pHs above the pKg of these acids. The capacity for butyric 

acid was the least affected by the pH increase. The lower adsorption capacities of 

carboxylic acids at pH > pKg result from the lower equilibrium concentration of the 

undissociated acid form, which is the species that forms a complex with the functional 

groups of the weak-base sorbents. 

A comprehensive study of the factors that affect the capacity and selectivity for 

sorption of acetic acid by basic sorbents was reported by Garcia and King (1989). 

They correlated the sorbent capacity and affinity for acetic acid with the functional 

group basicity. They reported that resin basicity was a good indicator of sorption 

affinity, although matrix chemistry and porosity, swelling, and functional group spacing 

also affected sorbent capacity and selectivity. The elution yield of acetic acid with 
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methanol inversely correlated with sorption affinities. The elution with methanol 

worked well only for weak-base sorbents. Only 50% of the acetic acid sorbed on 

Dowex WGR and MWA-1 (both tertiary amines) was desorbed with methanol at 20:1 

solvent to sorbent ratio. Ammonia was more effective in stripping acetic acid from 

tertiary and quaternary amines, producing ammonium acetate which could be 

thennaliy cracked to release ammonia. 

Tung (1993) investigated the sorption of lactic and succinic acids on Dowex 

MWA-1, IRA-35, Duolite A7, and IRA-910 basic sorbents. Resin capacities for HCI 

were determined experimentally and compared with those of lactic and succinic acids. 

For Dowex MWA-1, IRA-910, and IRA-35, maximum capacities for lactic acid agreed 

very well with capacities for HCI. For Reillex 425 and Duolite A7, the available 

capacity was not fully utilized by lactic acid while only 50% of the available capacities 

were utilized by succinic acid. The lower capacity for carboxylic acids may be due to 

steric constraints and to the differences in acidity of carboxylic acids and HCI. The 

maximum uptakes for succinic acid were generally 8 to 15% higher than the values for 

lactic acid. Sorbent capacity at pH > pK^ was dependent on sorbent basicity. 

Lactic and succinic acids sorbed by Reillex 425, Duolite A7 and Dowex MWA-1 

were completely stripped with a stoichiometric amount of trimethylamine (TMA). 

Stripping lactic and succinic acids from IRA-35 required higher than the stoichiometric 

amount of TMA because it is more basic than the other tertiary amines. The strong-

base resins were not completely regenerable (60 to 75% regeneration) with TMA. 

Complete removal of TMA from TMA-lactate eluate was unsuccessful because the 

eluate became increasingly viscous as thermal cracking progressed. 
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Proposed Processes for Organic Acid Recovery and Purification 

Using Polymeric Sorbents 

Adsorption 

Yasuda etal. (1984) proposed separation of carboxylic acids by using weal<-

base resins with pyridine functional groups. Elution of acids with organic solvents was 

recommended. This method is suitable for separating acids with remarkably different 

acidities. 

Keil et al. (1985) used tertiary amine resins to recover lactic and citric acids. 

The adsorbed acid could be eluted with polar solvents such as lower aliphatic 

alcohols, methyl ethyl ketones, methyl and ethyl esters of acetic acid. The use of 

aqueous ammonia and other bases for acid elution was also proposed. In one 

example, lactic acid fermentation (immobilized Lactobacillus bulgaricus) was 

maintained at pH > 4 and the broth was directly adsorbed (extractive fermentation with 

external loop). The adsorption capacity was 68 g lactic acid per 100 grams of resin. 

Lactic acid was eluted with methanol and concentrated by distillation to produce 

"colorless oil" with 99% purity. In another example, fermentation was maintained at 

pH 6.2 with NaOH. At the end of fennentation, microorganisms were left to consume 

the remaining glucose and then the cells were filtered. The pH of the filtrate was 

adjusted to pH 2 with HCI and then, the filtrate was loaded on the sorbent. After the 

adsorption, the resin was washed with 2 BV of water. Lactic acid was eluted with 

methanol and concentrated as described earlier. 
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Obara (1988) described an application of a strong anion exchanger in recovery 

and purification of lactic acid from fermentation broth. The broth was neutralized with 

NH3 to produce ammonium lactate, bleached, and then filtered. The salts were 

removed by a cation exchange resin, and then the lactic acid was adsorbed on an 

anion exchange resin. Lactic acid was stripped from the anionic resin by sulfuric acid. 

The cation exchange and anion exchange resins were regenerated by using 1 M 

H2SO4 and 1 M NaOH, respectively. 

Rossiter (1991) used a strong anion exchanger in a continuous moving-bed 

contactor (ISEP) to recover lactic acid from fermentation broth containing 10-12% NH4-

lactate at pH 5-7. Lactic acid was desorbed by using dilute sulfuric acid to produce 8-

12% lactic acid solution. Post-adsorption washing was found to be important for the 

purity of the lactic acid produced. It was observed that washing was improved with 

increased fluid velocity and increased residence time of the resin in the wash zone. 

Also, residence time was more important than the fluid volume employed. 

Maeda and Nakasawa (1992) proposed a two-step process for purifying tartaric 

acid in the presence of gluconic and glycolic acids using strong cation exchange 

resins crosslinked (4-10%) with DVB. In the first step, salts, carbohydrates, and other 

impurities were separated from the acids using a cation exchange resin in Na^ form. 

In the second step, the organic acid fraction containing Na-carboxylates was converted 

into free acids and further purified by a strong cation exchanger in form. High-

purity tartaric acid was obtained by crystallization. The pH of the feed containing the 

organic acid was maintained at a level below the pK^ of the target carboxylic acid. 

This was achieved by adding sulfuric acid to the feed and the eluant. This process 
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could be used for desalting an acidified lactic acid fermentation broth and converting 

the lactate from the first column (Na^ form) into free acid. Again, Na-sulfate and 

sulfuric acid will be present in the final product solution. 

Ernst and McQuigg (1992) also utilized the ISEP contactor but they used a 

weak anion exchange resin (Reillex 425) to recover citric and lactic acids from 

fermentation broth by a temperature swing adsorption process. The resin was loaded 

with acid at 25°C and desorbed with water at 90°C. In their citric acid purification run, 

a product stream of 9% purified citric acid was obtained from the feed containing 16% 

citric acid, a dilution of almost twofold. They claimed that with this process, there is a 

potential savings of $0.03/lb citric acid. 

Mantovani etal. (1992) employed a strong-base anion exchanger (IRA-420, 

quaternary amine-SDVB in bicarbonate (HCO3) form) to adsorb sodium lactate from 

Lactobacillus case! broth (pH 6.4-6.6). The loaded resin was rinsed with 3 BV of 

water prior to elution with 5% ammonium bicarbonate. This step also converts the 

resin back to HCOg' form. Complete stripping of lactic acid required 3 BV of 

ammonium bicarbonate resulting in a threefold dilution of lactic acid. Excess 

ammonium bicarbonate in ammonium lactate solution was removed by heating the 

solution to 90°C. The ammonium lactate was converted to lactic acid by using a 

cation exchanger (IRA-120, sulfonate-SDVB in form). The lactic acid was 

concentrated by evaporating excess water. The cation exchange resin was 

regenerated by using 5% HCI. 

King and Tung (1992) proposed the use of moderate-base sorbents (MWA-1 

and AG3-X4) to extract carboxylic acids (lactic, fumaric, and succinic acids) from 
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fermentation broth at pHs close to or above the pK^ of the carboxylic acids. They 

reported that at pH > pKg, these sorbents maintained high sorption capacities. The 

carboxylic acids could be stripped from the sorbents by using NH3 or TMA. Complete 

recovery of acids from MWA-1 was obtained when the molar ratio of desorbent and 

carboxylic acid in the column was 2:1. Only 87% was recovered from AG3-X4, a resin 

that has 10% of sorption sites as quaternary amine. Complete evaporation of TMA 

from TMA-lactate solution was difficult because of self-esterification of the acid 

resulting in a viscous solution that apparently imposed severe transport limitations. 

Continuous chromatography 

Kulprathipanja and coworkers (1988, 1989a, 1989b, 1991) proposed using a 

continuous countercurrent simulated moving-bed system described in a patent by 

Broughton (1961) for the recovery of citric and lactic acids from fermentation broth. 

They evaluated neutral, weak-base (pyridine and tertiary amine) and strong-base 

(quaternary amine) polymeric sorbents as possible packing materials. Pulse tests on 

broth containing 10-40% organic acid were performed by using the dynamic testing 

apparatus packed with adsorbents. The weak-base and strong-base sorbents were 

prepared in sulfate form by using 0.5 M H2SO4. The authors found that, in all cases, 

the pH of the feed had to be maintained at a pH below the acid pKg (pKg^ for citric 

acid) to prevent the "breakthrough" of the organic acid with salts and carbohydrates at 

the beginning of the cycle. A 0.01-0.1 M H2SO4 eluant was found to be desirable. 

The fermentation broth used was acidified by adding sulfuric acid. The sorbent in 

sulfate form interacts with the undissociated citric and lactic acids by hydrogen 
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bonding. Altliough most of the salts and other broth components were separated, 

minute amounts of some components were still eluted with the acid. A twofold dilution 

of the acid was also obtained. Water was not effective in eluting either lactic or citric 

acid from moderate- and strong-base sorbents. The elution of citric acid from a weak-

base (pyridine) resin by using water was not practical. The late breakthrough of citric 

acid resulted in excessive dilution and a longer elution zone, although excellent 

separation from broth impurities was achieved. Maeda and Nakasawa (1992) 

suggested using a cation exchanger in form and eluting with dilute sulfuric acid. 

The advantage in using a cation exchanger was that no excessive tailing of lactic acid 

peak was observed. 

A similar process was also proposed by Collin and Buresch (1990) using IRA-

900 (quaternary amine) and IRA-67 (tertiary amine). The separation of lactic and citric 

acids from fermentation broths was performed in a simulated moving-bed contactor at 

70° and 75°C. Concentrated lactic acid broth (40% lactic acid) was separated on IRA-

900 in sulfate form by using water as eluant. Purification of over 95% was achieved, 

but the lactic acid concentration was about half that of the feed. Concentrated citric 

acid (43% citric) was purified on IRA-67 with 0.1% sulfuric acid as the eluant. Sulfuric 

acid was the major impurity at 0.27%. 

Extractive fermentation by using sorbents 

Yates (1981) proposed a process for continuous recovery and concentration of 

low-molecular weight organic acids produced by fermentation. The cell-free broth from 

the fermentor containing sodium acetate was contacted countercurrently with a basic 
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ion exchanger with tertiary amine functional groups (IRA-68) in bicarbonate form. The 

spent broth was recycled to the fermentor. The acetate was recovered from the resin 

by using a water-containing polar solvent (with bp of -30° to 90°C) with CO2 (10-750 

psig). Acetic acid was recovered and, at the same time, the resin was regenerated to 

bicarbonate form. The excess solvent and water were evaporated to obtain a crude 

acetic acid. 

Behrens et al. (1984) employed a quaternary ammonium-functionalized belt 

(polyamide in combination with dimethyl-diallylammonium chloride and NN-methylene-

bis-acrylamide) in OH" form to extract citrate from fermentation broth. During 

fermentation, the belt was pulled continuously through the fermentor, regeneration 

bath, and a sterilization chamber. Rubber lips sealed the fermentor and the 

sterilization chamber from the environment to maintain aseptic operation. The pH of 

the broth was 5.5 and contained 10 g/L sodium citrate. At the end of fermentation, the 

regeneration bath contained 2.2 g/L sodium citrate. 

Srivastava etal. (1992) controlled the pH in batch L delbrueckii iermentation of 

sucrose by circulating the broth through a column of strong-base anion exchange resin 

(IRA 400, quaternary amine). Simultaneous extraction of lactic acid by ion exchange 

increased the lactic acid yield by 12.1% and cell yield by 36.4% when compared with 

the NaOH-controlled pH process. The fermentation time was reduced by 69.4%. As a 

result, there was a 5.3-fold increase in overall lactic acid productivity. 

Davison and Scott (1992) proposed a biparticle fluidized-bed bioreactor (FBR) 

for continuous lactic acid fermentation and adsorption. L. delbrueckii was immobilized 

in 4% K-carrageenan and the density of the gel beads was adjusted by using FeaOg or 
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CeOj. The gel beads were fluidized in one section of the FBR by adjusting the 

upward flow of the liquid feed. The activated carbon used as adsorbent was denser 

than the gel beads. It was added on top of the FBR and nnoved down through the 

fluidized gel beads, adsorbing the lactic acid produced. The spent adsorbent was 

then collected from the bottom. Carbon adsorbed less lactic acid than expected, as 

well as a small amount of glucose. 

Tsao et al. (1993) also conducted batch fermentation of glucose by L 

delbruickii coupled to a column of a weak-base adsorbent with pyridine functional 

group (Reillex 402). Lactic acid productivity of 0.98 g/L/h was achieved, an increase 

of 80% compared with fermentation without extraction (0.54 g/L7h). Productivity 

increased when the amount of resin in the column was increased. Excellent results 

were obtained when Reillex 425 was used instead of Reillex 402. The saturated resin 

was rinsed with water to remove the broth in the column and lactic acid was desorbed 

by using methanol. 
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III. MATERIALS AND METHODS 

Evaluation of Basic Sorbents 

Resin preparation 

Eight basic sorbents were initially chosen for this study (Table 3.1). Reillex 425 

and Dowex MWA-1 have been used widely in the sorption of a variety of carboxylic 

acids. Some are experimental resins (Dowex XUS resins) recommended by the 

manufacturer. For purposes of discussion, these resins were classified according to 

their basicities. Weak-base sorbents have pKgS < 7 (VI-15 and Reillex 425). 

Moderate-base sorbents have pKgS between 7 and 10 ( Dowex MWA-1, WGR-2, XUS-

43432 and XUS-40283). Strong-base sorbent are those with pKg >10 (IRA-985 and 

XUS-40196). 

The hydrated sorbents were transferred into a 1-L column (30 x 6 cm). The 

sorbent bed was backwashed with deionized water to remove the fine particles. This 

step was followed by washing (downflow) of the bed with 3 BV of 5% HCI, 5 BV of 

deionized water, 3 BV of 4% NaOH, and another 5 BV of deionized water. The flow 

rate was adjusted to allow at least 30 min contact time between the sorbent and HCI 

or NaOH solutions. These steps were repeated one more time. The final water-rinse 

was performed until the effluent pH was less than 8. The weak- and moderate-base 

resins (in free-base form) were dried in a vacuum oven (60°C at 35 mm Hg) and 

stored in a desiccator until used. The strong-base sorbent (OH" form) was drained 

under vacuum through a filter and stored in a capped plastic bottle. The strong-base 
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Table 3.1. Properties of selected basic adsorbents 

Resin Manufacturer Type/Matrix Functional 
group 

Mesh size PKa 

Reillex 425 Reilly Industries 
Indianapolis, IN 

Macroporous/PVP-DVB Pyridine 18-50 4.9^/5.2" 

VI-15 Riedel-de-Haen 
Seeize, Germany 

Gel/methylene-bis-
acrylamide 

Imidazole 32-150 6.9® 

MWA-1 Dow Chemical 
Midland, Ml 

Macroporous/SDVB 3°-amine 20-50 00
 

CO
 a
 

WGR-2 Dow Chemical Gel-Macroporous/ Epoxy 3°-amine 20-50 8-10 

XUS 40283 Dow Chemical Macroporous/SDVB 3°-amine - 8-10 

XUS 43432 Dow Chemical Gel/ SDVB 3°-amine 30-35 8-10 

IRA 958 Rohm and Haas 
Philadelphia, PA 

Macroporous/ADVB 4°-amine,Type 1 20-50 >10 

XUS 40196 Dow Chemical Gel/SDVB 4°-amine,Type 1 30-35 >10 

^Data from Kuo eta!., 1987. 

''Data from Chanda et al., 1985. 

•^/Veast, 1987. 
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sorbent was not oven-dried because the quaternary ammonium group in hydroxide 

form is susceptible to thermal degradation when subjected to temperatures over 60°C 

(Helfferich, 1962). The moisture contents of the sorbents were determined by Karl 

Fischer titration (ASTM E203-75, 1975). 

Total resin capacity for chloride 

Weak-base and strong-base resin capacities for chloride ions were measured 

by following the procedure outlined in the Rohm and Haas Ion Exchange Resin 

Laboratory Guide (Rohm and Haas, 1988). Resin (5 g) in chloride form was packed 

into a column. Chloride ions bound to weak-base sorption sites of the resin were 

eluted first by passing 1 L of 1 % NH4OH through the column. This was followed by 

passing 1 L of 1M NaNOg to elute the remaining chloride ions held by the strong-base 

sites. Chloride ions recovered by each eluate were quantified by titration. 

Analytical methods 

Lactic acid and glucose concentrations were analyzed by using HPLC (Maxima 

820, Waters, Milford, MA) equipped with a refractive Index detector and Bio-Rad 

Aminex HPX-87H column (300 x 7.8 mm) (Bio-Rad Chemical Division, Richmond, CA). 

The column temperature was maintained at 65°C by using a column heater (Eppendorf 

CH-30, Brinkmann Instruments, Inc., Westbury, NY). The mobile phase was 6 mM 

H2SO4 at a flow rate of 0.8 mL/min. 
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Preparation of starting lactic acid solutions 

Twenty percent lactic acid solution was prepared from 88% certified-grade lactic 

acid (Fisher Scientific, Pittsburgh, PA) and heated close to boiling to hydrolyze the 

lactic acid anhydride present in the concentrated solution. The presence of lactic acid 

anhydride in the 20% solution was monitored periodically by using HPLC. The pHs of 

the starting solutions for the batch and fixed-bed experiments were adjusted to the 

desired levels by using 10 M NaOH. 

Batch sorption 

Composite sorption isotherms were developed by using a 1:10 (w:v) ratio of dry 

resin and starting solution. Aqueous lactic acid with concentrations ranging from 2.5 

to 150 mg/mL at four different pHs (2.8, 3.8, 4.8 and 5.8) were used as starting 

solutions. The vials containing the sorbent and lactic acid solution were maintained at 

30°C in a shaking water-bath (Model 3450, Lab-Line Instruments, Inc., Melrose, IL) 

and were allowed to equilibrate for at least 24 h. The pH of the bulk solution at 

equilibrium was measured, and the lactic acid concentrations were determined by 

using HPLC. 

The amount of lactic acid sorbed by the resin was calculated by using the 

following equation: 

{Co-C;fV (3.1) 

w 

where q - amount of lactic acid sorbed by the resin (mg/g dry resin) 
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Co - initial concentration of lactic acid (mg/mL) 

Cg - concentration of lactic acid at equilibrium (mg/mL) 

V - initial volume of lactic acid solution (mL) 

W - weight of dry resin (g) 

Fixed-bed sorption 

The set-up for fixed-bed sorption is illustrated in Figure 3.1. The flangeless 

fittings used to connect the tubings to the distribution valves allowed fast and easy 

change from downflow to upflow (and vice versa) configuration whenever desired. A 

jacketed 30 x 1 cm (i.d.) column (Kontes Scientific Glassware/Instruments, Vineland, 

NJ) equipped with adjustable plungers was charged with hydrated resin (2 g dry resin). 

The air trapped in the sorbent was removed by stirring the resin, and the plunger was 

lowered to the top of the sorbent bed. The column was drained under vacuum to 

estimate the interstitial volume of the bed. The column was refilled with water, then 

the trapped air was removed. The feed solution containing 60 mg lactic acid/mL was 

introduced into the column by using a Rabbit peristaltic pump (Rainin Instrument Co., 

Inc., Woburn, MA) at the rate of 0.5 mUmin. A constant-temperature circulator (Model 

800, Fisher Scientific, Pittsburgh, PA) was used to maintain the temperature of water 

in the jacket at 30°C. Fractions (2.0 mL) were collected from the column, and the 

lactic acid concentration was analyzed to monitor the saturation point. The sorbent 

was considered to be saturated when the lactic acid concentration in the effluent was 

at least 95% of that in the feed. The lactic acid concentration and pH of each fraction 
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Figure 3.1. Set-up for fixed-bed sorption experiments 
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were determined. Column capacities at saturation were calculated by using the 

following equation: 

.M:{CrC)vi-cy^ (3.2) 

where q^ - amount of lactic acid sorbed by the resin at saturation 

(mg/g dry resin) 

C, - concentration of lactic acid in the feed solution (mg/mL) 

/• - fraction 1 to n; n is the fraction at saturation 

Cj - concentration of lactic acid in fraction / (mg/mL) 

V| - volume of fraction / (mL) 

Vs, - interstitial volume (mL) 

W - dry weight of the resin in the column (g) 

Lactic Acid Recovery From Fermentation Broth 

Lactic acid recovery scheme 

A simple scheme using weak- and moderate-base sorbents was used for 

recovering lactic acid from fermentation broth. The three main steps in the process 

were: (1) acidifying the broth, (2) adsorbing lactic acid on basic sorbent, and (3) 

concentrating lactic acid (Figure 3.2). The acidification step was carried out by using a 

weak-acid cation exchanger prepared in form. The lactic acid from the acidified 

broth was then recovered by using a basic sorbent. The exhausted sorbent was 

rinsed with water to wash out the unbound components of the broth from the voids of 
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Figure 3.2. Scheme for lactic acid recovery and purification 
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the bed. The adsorbed lactic acid was eluted by using HPLC-grade methanol (Fisher 

Scientific, Pittsburgh, PA) or 5% NH4OH depending on the sorbent used. 

Broth preparation 

The model lactic acid broth (Table 3.2) used in this study was a glucose-yeast 

extract (DIFCO Laboratories, Detroit, Ml) medium spiked with lactic acid and minerals. 

The pH of the broth was adjusted to 4.5 by using ammonium hydroxide. Starting broth 

pH of 4.5 was chosen because the final pH of the broth from batch lactic acid 

fermentation is typically around this value. 

Table 3.2. Composition of model lactic acid broth. 

Components Amount, g/L 

Yeast extract 10.00 

Glucose 10.00 

Lactic acid 100.00 

MgS04-7H20 0.60 

K2HPO4 0.50 

MnS04 0.03 

NH4OH (as required to adjust pH to 4.5) 

Column preparation 

The resins selected for this study were Riedel-de-Haen VI-15, Dowex MWA-1, 

and Amberlite IRA-35. The columns for these resins were prepared as described 
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earlier. One of the intended applications of Duolite C-464 (Rohm and Haas, 

Philadelphia, PA), a weak-acid cation exchanger (acrylic acid in SDVB matrix) is for 

removal of ammonia; hence, it was chosen for the acidification step. The Duolite C-

464 column was conditioned in a similar manner as the basic sorbents except that the 

order of NaOH and H2SO4 rinsing was reversed to obtain a resin in form. 

Broth acidification 

The model broth was passed through the Duolite C-464 column at a flow rate 

of 3 BV/h. Fractions were collected and analyzed for lactic acid and glucose using 

HPLC. The pH of each fraction was also measured. Fractions containing acidified 

lactic acid with a pH < 3.2 were pooled and set aside for sorption on basic sorbents. 

The column was regenerated by using sulfuric acid. Several cycles were run to 

produce suffecient amount of acidified broth for the sorption experiments. 

Resin regeneration by using carbonic acid 

Regeneration of the cation exchange resin by using carbonic acid was also 

explored. A 1 x 30 cm stainless steel column was packed with Duolite C-464 resin 

and converted to form by using 5% HCI. Ten percent aqueous ammonium lactate 

(with pH 6.3) was introduced into the column upflow by using a piston pump 

(Minipump NSI-33R, LDC Analytical, Riviera Beach, FL) at 3 BV/h. Effluent fractions 

were collected and pHs were measured. 

The carbonic acid was prepared by bubbling COg in 200 mL water contained in 

the 300 mL bolted closure reactor (Autoclave Engineers, Inc., Eire, PA) (Figure 3.3) 
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Figure 3.3. Set-up for carbonic acid regeneration 
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sitting on top of a plate stirrer. A head space pressure of 1724 kPa was maintained 

by a pressure relief valve. A minimum column back pressure of 1724 kPa was also 

maintained by a pressure relief valve fitted at the effluent end of the column. After 

regeneration, the column was loaded again with ammonium lactate, fractions were 

collected, and pHs were measured. The pH profile of the carbonic-acid-regenerated 

column was compared with the HCI-prepared column to determine the effectiveness of 

carbonic acid regeneration. Carbonic acid regeneration at 65°C was also performed 

by using a column heater (Eppendorf CH-30, Brinkmann Instruments, Inc., Westbury, 

NY) and a temperature controller (Eppendorf TC-50). The same procedure was 

repeated using model broth instead of ammonium lactate solution. 

Sorption on weak-base sorbents 

The acidified broth was introduced onto the basic sorbent column upflow at 3 

BV/h. The column was rinsed with water to remove the excess broth and other 

unbound broth components followed by elution of bound lactic acid with methanol or 

5% NH4OH. Fractions were collected and analyzed for lactic acid, glucose, and pH. 

Methanol was evaporated from the eluate by using a rotary evaporator. Eluants from 

NH4OH desorption were not concentrated. The column was regenerated by using 3 

BV 4% NaOH and rinsed with 5 BV water. 
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Broth Pretreatment 

Browning reaction and activated carbon treatment 

Model broths at pH 4.5 and 10 (pH was adjusted by using NH4OH) were placed 

in 250-mL Erienmeyer flasks and boiled for 5 h over a hot plate with constant stirring. 

Water was added periodically to bring the liquid back to its original level. After 5 h, 

the browned broths were cooled to room temperature and their volumes adjusted to 

their original level by adding water. Samples of heat-treated broths were analyzed for 

lactic acid and glucose by using HPLC, and their pHs were measured. 

Broth decolorization by using activated carbon 

The activated carbon (Calgon Carbon F-400, Calgon Carbon, Pittsburgh, PA) 

column was conditioned by passing 5 BVs of 10% (by wt) HCI followed by deionized 

water until the effluent was about pH 7. The heat-treated broths and an unheated 

broth (pH 4.5) were passed through an activated carbon column at a flow rate of 3 

BV/h. Fractions were collected and analyzed for lactic acid and glucose by using 

HPLC. The pHs of the fractions were also measured. 

Broth decolorization by using nonfunctionalized resins 

Nonfunctionalized resins with different matrix polarities were chosen for this 

study (Table 3.3). The sorbents were packed in a 1 x 30 cm column and 

preconditioned prior to use. The Amberlite XAD-16 and Diaion HP-2MG resins were 

washed repeatedly with methanol and then rinsed with deionized water. The Duolite 
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Table 3.3. Nonfunctionalized polymeric sorbents. 

Resin 
Properties 

Amberlite XAD-16 Diaion HP-2MG Duolite S-761 

Matrix Polystyrene-DVB Polyacrylic acid-DVB Phenolformal-
dehyde 

Mean surface 
area 

800 m^/g 500 m^/g 100 m^/g 

Pore diameter 100 A 300-600 A 600 A 

Applications hydrophobic 
compounds up to 
40,000 MW; 
antibiotics; 
separation of large 
organic molecules 
(especially proteins) 

hydrophobic 
compounds: antibiotics; 
aliphatics; color bodies 

removal of 
proteins; removal 
of high-
molecular weight 
colorants from 
sugar solutions, 
wines, etc.; 

S-761 resin was rinsed with methanol, dilute NaOH, dilute H2SO4, and deionized water 

until the effluent was about pH 7. 

The model broth was passed through the columns and fractions were collected 

and analyzed for lactic acid and glucose. The pHs of the fractions were also 

measured. The columns were rinsed with deionized water to remove the broth, 

followed by lactic acid elution by using methanol. Samples of methanol eluate were 

analyzed lactic acid and glucose by using HPLC. 
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IV. RESULTS AND DISCUSSION 

Evaluation of Selected Basic Sorbents 

Basic sorbent capacities for HCI 

The capacity of the basic sorbent for chloride ions is a measure of the number 

of its ionogenic group. The value is usually expressed in terms of milllequivalents 

(meq) per gram dry sorbent in CI" form. This value is useful in characterizing the 

sorbent and in numerical calculations of ion exchange operations (Helfferich, 1962). 

The measured capacities and the manufacturers' stated capacities are presented in 

Table 4.1. The manufacturers' values in volume capacities were converted to weight 

capacities by using the resin's density and water retention data stated in their product 

literature. Except for Riedel-de-Haen VI-15, all experimental values agreed very well 

with the manufacturers' values. The experimental capacity for VI-15 was about four 

times higher than the manufacturers' value. This difference could be due to the high 

nitrogen content of the resin. The chemical structure of VI-15 (Figure 2.4b) shows that 

both the imidazole and the crosslinker carry two N each. At very low pHs, all these 

nitrogens can be protonated, and thus, can adsorb chloride ions. The capacity stated 

by the manufacturer probably accounted only for one N In the imidazole. Reillex 425 

also had high capacity for HCI, which directly translates into the number of pyridyl 

group In the resin (Figure 2.4a). 

The moderate-base sorbents contained considerable amounts of strong-base 

capacity, which indicated that aside from the tertiary amine functional groups. 
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Table 4.1. Capacities of sorbents for HCI 

Manufacturers' values Experimental values^ 
(meq/g) (meq/g dry resin) 

Sorbent Weak-base Strong-base Weak-base Strong-base 

Reillex 425 5.5 - 6.2 ± 0.1 -

VI-15 1.7 - 8.0 ± 0.1 -

MWA-1 3.5" - 4.4 ± 0.1 0.6 ± 0.1 

WGR-2 5.5" 0.6" 8.3 ± 0.0 -

XUS 40283 3.8" 0.6" 4.5 ± 0.1 1.0 ±0.0 

XUS 43432 4.8" - 3.0 ± 0.1 1.2 ±0.1 

IRA-958 - 3.8" 2.2 ± 0.0 1.2 ±0.1 

XUS 40196 - 5.0" 1.0 + 0.0 3.6 ± 0.0 

® Mean ± standard deviation. 
" Converted from volume capacity. 

these resins also had quaternary amine functional groups. Dowex XUS-43432 had the 

highest strong-base capacity (28% of its total capacity) followed by Dowex XUS-43432 

(22%) and Dowex MWA-1 (12%). 

The strong-base resins had a considerable fraction of their total capacity as 

weak-base capacity. Dowex XUS-40196 contained about 22% in weak-base capacity 

while Amberlite IRA-958 had 65%. Such a high weak-base fraction indicates that a 

considerable amount of quatemary amine functional groups were degraded. The 

weak-base capacity level is critical for the performance of strong-base sorbents 



www.manaraa.com

46 

because this fraction cannot be utilized at pHs where only ionized ions, which do not 

interact with the weak-base groups, are present. 

Effect of pH on sorption of basic sorbents 

The amount of lactic acid sorbed by the resin, calculated using Equation 3.1, 

was plotted against the total lactic acid in the bulk liquid at equilibrium (Figures 4.1 

through 4.9). The final pH values represent the range of equilibrium pHs that were 

measured at each experimental point. 

Reillex 425 exhibited high capacity for lactic acid from solutions with initial pH 

of 2.8, but practically no sorption was observed from solutions with starting pH of 4.8 

(Figure 4.1). At pH 4.8, only 5% of the total lactic acid is present as free lactic acid, 

so there was not much free lactic acid available for sorption. A similar sorption 

isotherm was obtained by Chanda etal. (1985) for sorption of monocarboxylic acids 

on a gel-type poly(4-vinylpyridine), and by Ernst and McQuigg (1992) at equilibrium 

concentrations up to 180 g/L lactic acid. 

Riedel-de Haen VI-15 also showed high capacity for lactic acid from solutions 

with starting pHs of 2.8 and 3.8 (Figure 4.2). Maximum sorbent capacity from 

solutions at pH of 3.8 was achieved only at about twice the equilibrium concentration 

needed to attain maximum capacity at pH 2.8. Sorption of lactic acid also decreased 

dramatically at higher pHs. 'Negative' sorption values were obtained from lactic acid 

solutions with initial pHs of 5.8. The pH at equilibrium, however, increased 

significantly, indicating that some lactic acid was adsorbed by the sorbent. Because 

Riedel-de-Haen VI-15 has a hydrophilic matrix and the sorbent was dry prior to 
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Figure 4.1. Composite sorption isotherms of lactic acid in Reillex 425 
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Figure 4.2. Composite sorption isotherms of lactic acid in Riedel-de-Haen VI-15 
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sorption, tlie water from the bull< solution was utilized to hydrate the resin. In addition, 

water was also absorbed in the micropores which are not accessible to lactic acid. As 

a result of this high water uptake with very little or no lactic acid adsorbed, the final 

lactic acid concentrations measured were higher than the initial concentrations. This 

effect was more pronounced at higher equilibrium concentrations of lactic acid. 

The three moderate-base resins (Dowex MWA-1, XUS-40283, and XUS-43432) 

with styrene-DVB matrix and tertiary amine functionality behaved similarly (Figures 

4.3-4.5). Their sorption capacities were higher than those of Reillex 425 and Riedel-

de-Haen VI-15, but the capacities for lactic acid were just as sensitive to changes in 

pH. The low sorption capacities observed at high pHs (initial pHs 4.8 and 5.8) were 

due to the strong-base capacities of these sorbents. For Dowex WGR-2, the 

isotherms for solutions with starting pHs of 2.8 and 3.8, and pHs of 4.8 and 5.8 

approached the same maximum values (Figure 4.6). Like the other moderate-base 

resins, sorption measured at high pH can be attributed to the strong base-capacity of 

the sorbent. 

The strong-base sorbents (Dowex XUS-40196 and Amberlite IRA-958) also 

exhibited high capacities at low pHs although the values were much lower than those 

of the moderate-base sorbents (Figures 4.7 and 4.8). As expected, their capacities at 

high pHs were considerably higher than the moderate-base sorbents. However, there 

was a substantial drop in their capacities as the pH increased. The weak-base 

capacity of Dowex XUS-40196 was only 22% of the total capacity, but the capacity at 

high pH (initial pH 4.8 and 5.8) dropped by about 50%. It appears that a large portion 

of the strong-base capacity of Dowex XUS-40196 was not accessible to lactic acid. 
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Figure 4.5. Composite sorption isotherms of lactic acid in Dowex XUS 43432 
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Figure 4.8. Composite sorption isotherms of lactic acid in Amberlite IRA 958 
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The drop in capacity for Amberlite IRA- 958 was about 70%, which was consistent 

with the weak-base capacity oieasured. 

To eliminate the pH effect on lactic acid uptake by weak-and moderate-base 

resins, the equilibrium concentrations of free lactic acid, the species adsorbed by the 

resin, were calculated by using the Henderson-Hasselbach equation and the 

composite sorption isotherms were replotted. The Langmuir model was used to 

describe the competition between lactic acid and n molecules of water for a basic site 

on the sorbent (Ruthven, 1984; Garcia and King, 1989): 

where HLa represents the free lactic acid, B represents a basic functional group, and 

(aq) refers to the bulk liquid phase. The assumptions of the Langmuir model are: (1) 

only 1:1 complexes are formed, (2) only the HLa form of the lactic acid participates in 

the complexation reaction with B, (3) basic functional groups have equal basicity and 

accessibility, and (4) the number of basic functional groups is constant. With these 

assumptions, the composite sorption isotherm is given by the following equation: 

HLa(3,, + B-(H20)„ + B-HLa (4.1) 

1 +K*Cf^lJ, 
(4.2) 

where q 

Qm 

K 

composite uptake calculated from Equation 3.1 (mg/g) 

total sorbent capacity for lactic acid (mg/g) 

association constant of the (B-HLa) complex (mL/mg) 
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C^La - equilibrium lactic acid concentration in the bulk fluid 

(mg/mL) 

The model parameters K and q^, were determined by a nonlinear regression fitting of 

the equilibrium data to Equation 4.2. 

The isotherm for Reillex 425 did not exhibit a Langmuirian behavior (Figure 

4.9a). A better fit was obtained when a linear term (Ki*CHLa) was added to the 

Langmuir model (Equation 4.3). Although the linear term may be interpreted as multi-

layer sorption, this may not be the case here. The high solubility of lactic acid in water 

will probably prevent multilayer formation. Tung (1993) used lactic acid solutions at its 

natural pH with concentrations up to 12 wt %. The data fit the Langmuir model very 

well and a q^ of 0.26 g/g dry sorbent (2.86 meq/g) was reported, which is about half of 

the total capacity of the sorbent. The low capacity for lactic acid was probably due to 

steric constraints. Lactic acid is much larger than HCI, and therefore, unaccessible to 

all the available sorption sites In the sorbent. The increase in sorption as the lactic 

acid concentration increased may have been due to the corresponding increase in 

swelling of the resin, making more sites accessible for binding in the process. Riedel-

de-Haen VI-15 (Figure 4.9a) fit the Langmuir model very well. The calculated K value 

was much higher than that of Reillex 425 (Table 4.2). The maximum sorption capacity 

(q J for lactic acid was less than half of its HCI capacity and can be attained from 

solutions with concentrations as low as 10 mg lactic acid/mL. 
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Table 4.2. Calculated values of the Langmuir model parameters and resin capacities 

Resin 
(mL/mg) 

qm^ 
(mg/g dry resin) 

Total capacity for 
HCI 

(meq/g dry resin) 

Total capacity for 
lactic acid" 

(meq/g dry resin) 

Reillex 425 0.2 ± 0.0 
2.1=10.1 

102 ± 11 6.1 N/A 

VI-15 2.2 ± 0.7 280" 8.0 3.1 

MWA-1 8.4 ± 1.7 365 ± 11 4.9 4.0 

WGR-2 10.4 ± 3.8 376 ± 16 8.3 4.2 

XUS 40283 16.5 ±3.3 335"^ 4.5 3.7 

XUS 43432 16.9 + 5.6 328 ± 13 4.2 3.6 

XUS 40196 7100 ±2300 
0.005"= ± 0.004 

120 ±8 
420® ± 200 

4.6 N/A 

0.2 ± 0.0 1 1 0 ± 3  3.6' 1.2 

IRA 958 9930 ± 6700 
0.03"= ± 0.02 

105 ± 16 
158® ±26 

3.4 N/A 

0.1 ± 0.0 8 4 ± 4  1.2' 0.9 

® Mean + standard error. 
" Calculated from values. 
' Values of K,or K2 in the modified Langmuir model. 
" Value used in Langmuir equation. 
® Value of in the modified Langmuir model. 
* Strong-base capacity only. 

N/A means not applicable. 
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The moderate-base sorbents also conformed very well to the Langmuir model 

(Figure 4.gb). Their K and values were basically similar despite the differences in 

measured strong-base capacities. The lactic acid capacities of Dowex MWA-1, Dowex 

XUS-40283, and Dowex XUS-43432 were slightly lower than their HCI-capacity 

whereas the lactic acid capacity of Dowex WGR-2 was only about half of the capacity 

for HCI. The low capacity for lactic acid is again due to inaccessibility of the sorption 

sites since Dowex WGR-2 is also partially microporous. 

Equation 4.1 must be rewritten to reflect the sorption mechanism in strong-base 

sorbent. The quaternary amine can adsorb both free lactic acid (HLa) and lactate 

(La ) as shown in the following equations: 

HLa(aq, + BOH ** + BLa (4.4) 

MLa(aq) + BOH MOH + BLa (4.5) 

BOH is the strong-base in the resin in OH" form and MLa is the lactate salt. Equation 

4.4 is an acid-base neutralization, whereas Equation 4.5 represents a typical ion 

exchange reaction. Dowex XUS-40196 and Amberlite IRA-958 contained considerable 

amounts of weal<-base capacity: therefore, Equation 4.1 also applies. The presence of 

weak- and strong-base sorption sites violates the assumption of equal basicity of 

sorption sites. At pHs below 3, where mostly free lactic acid exist, both weak- and 

strong-base capacities are utilized. Tung (1993) used a two-site sorption model 

, Qm2*Kz*^HLa m Q\ 
^*f<Z*OHLa 

(Equation 4.6) to describe sorption of lactic acid on a polyfunctional Duolite A7 resin. 
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It was assumed that each type of binding site sorbs acid independent of each other. 

An equivalent K (Kgyg) was calculated from the average of the two K values weighted 

by the corresponding q^ values. The same model was applied here to describe the 

sorption of free lactic acid on weak-base and strong-base functional groups. 

At pHs above 6, where mostly lactates are present, only the strong-base 

capacity is used for sorption. The Langmuir model is still valid and Chls was replaced 

with C|a.. When considerable amount of each species are available, there will be some 

competition between free lactic acid and lactate for the sorption sites because the 

quaternary ammonium groups can adsorb either one. However, sorption of free lactic 

acid will be favored (acid-base neutralization reaction vs ion exchange) since the 

sorbents were prepared in OH" form. This case may require a more complicated 

model to address two-site and competitive sorption mechanisms and will not be 

considered here. 

The sorption isotherms of the strong-base resins (Dowex XUS-40196 and 

Amberlite IRA-958) from solutions with low pH (initial pH < 3) fit the two-site Langmuir 

model (Figure 4.10a). The value of Kg were very small and were not representative of 

K values obtained for tertiary amines. The high values of K and the large standard 

errors on these values overshadowed the Kg values. The Kg^g values for Dowex XUS-

40196 and Amberlite IRA-958 were 1578 and 3964 mLVmg, respectively (Table 4.2). 

These K^^g values were two orders of magnitude greater than the K values for tertiary 

amines in moderate base resins . 

The isotherms of the strong-base resins at high pH fit the Langmuir model very 

well (Figure 4.10b). Although the strong-base capacity of Dowex XUS-40196 was 
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three times that of Amberiite IRA-958, its capacity for lactate was only slightly greater 

than that of Amberiite IRA-958. Only 33% of the strong-base capacity of Dowex XUS-

40196, a gel-type resin, was utilized for sorption compared with 75% for Amberiite 

IRA-958, a macroporous resin. The accessibility of strong-base sites in Amberiite IRA-

958 also accounts for the high K value despite its having 65% weak-base capacity. It 

is also interesting to note that the K values were much lower than those obtained for 

moderate-base sorbents, implying that ion exchange interactions are less specific than 

of acid-base interactions. The maximum capacities were achieved at lactate 

concentrations above 30 mg/mL, three times the concentration needed for Riedel-de-

Haen VI-15 and moderate-base sorbents. 

Fixed-bed sorption 

Determining the breakthrough curves is a common practice in designing an 

adsorption process. The breakthrough profiles of three resins, representing each 

basicity group are shown in Figure 4.11. The breakthrough profiles for Riedel-de-

Haen VI-15 and Dowex MWA-1 clearly showed that these sorbents bind only the free 

lactic acid form. Two distinct concentration plateaus were observed in Riedel-de-Haen 

VI-15 (at pH 3.8), and MWA-1 (at pH 3.8 and 4.4). The measured outlet concentration 

of the first plateau corresponded to the concentration of the lactate anion in the feed at 

the specified pH, whereas the concentration of the second plateau matched that of the 

total lactic acid in the feed. The early breakthroughs observed for both resins at pHs 

greater than 2 were due to lactate breakthrough at void volume. In spite of the slight 

shift in the breakthrough points, the breakthrough profiles of Dowex XUS-40196 were 
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similar and were not significantly affected by the pH of the feed. The strong-base 

functional group of Dowex XUS-40196 sorbent interacts with both free lactic acid and 

lactate. With free lactic acid, the mechanism is an acid-base neutralization reaction, 

whereas with lactate, an anion-exchange with OH" prevails. As a result, no early 

breakthrough at void volume was observed with this sorbent, and a single saturation 

concentration at 60 mg/mL was measured. 

The saturation capacities (q^) were calculated and plotted against pH (Figure 

4.12). The saturation capacities of Riedel-de-Haen VI-15 at different feed pHs were 

always higher than those of Reillex 425 (Figure 4.12a). Chanda et al. (1985) 

observed the same trend in their study of carboxylic acid sorption with 

polybenzimidazole and poly(4-vinylpyridine) sorbents. The capacities of Riedel-de-

Haen VI-15 and Reillex 425 decreased with increasing pH of the lactic acid feed. 

Significant drops in saturation capacities of Dowex WGR-2 and Dowex XUS-40283 

occurred at pHs > 4.5, whereas the capacity Dowex of MWA-1 slowly decreased 

throughout the pH range investigated (Figure 4.12b). This is contrary to the higher 

strong-base capacity measured for these sorbents since Dowex XUS 40283 has 

higher strong-base capacity than Dowex MWA-1. The experimental data indicated 

that the weak-base sorbents can be used up to pH 3.8 without substantial loss in 

capacity, while moderate-base resins can be used up to pH 4.5. It must be 

emphasized, however, that to minimize leakage of lactate, these resins should be 

used at pHs < 2.8. The sorption capacity of Dowex XUS-40196 remained high despite 

the high weak-base capacity measured for this resin (Figure 4.12c). 
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The sorption capacities estimated from the breakthrough curves 

were generally higher than those from the batch experiments. There are 

two reasons for this discrepancy. First, the saturation capacity values calculated by 

Equation (3.2) also include the lactic acid in the solution absorbed in the pores of the 

sorbents in addition to adsorbed lactic acid. Second, as discussed earlier, the 

composite isotherm tends to underestimate the sorption capacity, especially for low-

specificity sorbents. The greatest discrepancy between the batch and fixed-bed 

estimated capacities was obsen/ed with Riedel-de-Haen VI-15, which exhibited the 

highest water uptake. The actual saturation capacity of the resin, which represents 

the specifically adsorbed acid, can be estimated by subtracting the amount of lactic 

acid retained in the pores from the total sorption capacity. The pore volumes of 

hydrated Dowex MWA-1 and Reillex 425 resins were estimated by drying them at 

110°C and then correcting the respective Pg values for the amount of lactic acid 

retained in the pores. The corrected saturation concentrations were similar to the total 

sorbent capacities (qJ calculated from the composite isotherms. The exact resin pore 

volume is difficult to determine because of the swelling of the resin in the presence of 

lactic acid. 

Section summary 

Weak- and moderate-base sorbents should be used at feed pH below the pKg 

of lactic acid (3.86), preferably one to two pH units lower, to minimize leakage of 

lactate from the column. Of the weak-base sorbents, Riedel-de-Haen VI-15 exhibited 

significantly greater sorption capacity for lactic acid than Reillex 425. The moderate-



www.manaraa.com

68 

anion exchangers are applicable over a broader pH range with no significant reduction 

in capacities within the pH range studied. 

The high lactic acid capacity of Riedel-de-Haen VI-15 and the ease of 

regeneration by using low-boiling alcohols make it an attractive sorbent for lactic acid 

recovery. To maximize the sorbent capacity, the feed stream must be acidified first. 

Acidification by adding mineral acid to the broth is not desirable because the mineral 

acid competes with lactic acid for the sorption sites. Another problem that requires 

consideration is improving the physical stability of the sorbent. Excessive swelling and 

shrinking of the sorbent during sorption and desorption cycles make it susceptible to 

attrition. 

Recovery of Lactic Acid from Fermentation Broth 

Broth acidification 

Broth acidification by using a cation exchanger is a good alternative to adding 

mineral acid directly to the broth because no competing acids are introduced. The 

cation exchanger can also effect some purification by adsorbing certain impurities 

besides cations. The Duolite C-464 column was effective in lowering the pH of the 

broth (Fig. 4.13). The pH of the fraction at the point of breakthrough of lactic acid was 

around 3.0. The lowest pH achieved was 2.1. Fractions starting at breakthrough were 

pooled until the pH of the pooled fractions was about 2.8 (one pH unit below the pKa 

of lactic acid). The last fraction added to the pool had a pH of 3.2 and the lactic acid 

concentration was about the same as that of the feed. The total volume of the pool 
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was about 40% of the column bed volume. The pooled acidified broth had a pH of 2.9 

and contained 58.2 mg/mL lactic acid and 6.8 mg/mL glucose. Despite the dilution, 

the concentration of lactic acid was still above the minimum (about 10 mg/mL) needed 

to attain for all three basic sorbents. The cut-off pH of the acidified broth may be 

lowered further as long as the lactic acid concentration does not fall below 10 mg/mL. 

Duolite C-464 also removed the colored components, as manifested by the 

marked color reduction in the broth (from amber to faint yellow). The HPLC 

chromatograms (Figures 4.14a and 4.14b), however, show no significant decrease in 

the number of broth components. The faint yellow color in the pooled acidified broth 

came from the fractions approaching the cut-off point. By lowering the cut-off point 

closer to the minimum concentration required to obtain q„, the amount of colored 

impurities loaded into the basic sorbents will be reduced. These compounds may not 

be adsorbed by the basic sorbents, but may still appear in the concentrated product if 

not removed completely during the wash step. If they do adsorb on the basic sorbent, 

they may elute with lactic acid during desorption. 

Column regeneration by using carbonic acid 

One advantage of weak-acid cation exchanger is that almost any acid, 

including carbonic acid, may be used to regenerate it (Kunin, 1984). This prospect is 

very appealing considering that the generation of waste salt can be minimized. At 

atmospheric pressure, the NH4HCO3 can be easily decomposed to NH3 and CO2 at 

60°C (Walkup et a!., 1991). This possibility was explored by regenerating the 

exhausted Duolite C-464 column by using carbonic acid. 
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Ten percent aqueous ammonium lactate (with pH 6.3) was acidified by using 

the Duolite C-464 column regenerated with 5% HCI or carbonic acid. The pH profile 

of the acidified broth from HCI-regenerated column showed that a minimum pH of 

about 3.1 was achieved (curve labelled HCI in Figure 4.15) while a minimum pH of 

about 4.5 was obtained from the carbonic acid-regenerated column (curve labelled 

H2CO3 -25°C in Figure 4.15). This indicated that carbonic acid did not regenerate the 

column to form completely. Regeneration was significantly improved when the 

column temperature was raised to 65°C. This time, the minimum pH of the acidified 

broth obtained was about 3.5 (curve labelled HgCOg - 65°C in Figure 4.15). However, 

the desired pH of < 2.8 still could not be attained. 

The same procedure was repeated by using the model broth at pH 4.5 instead 

of pure ammonium lactate solution with a pH of 6.3. The back pressure was also 

increased to 2758 kPa to keep more carbonic acid in solution at 65°C. Amberlite IRC-

50, a cation exchanger that is slightly weaker than Duolite C-464, was also evaluated. 

The lowest pHs obtained from sulfuric acid-regenerated column were 2 and 2.5 for 

Duolite C-464 and IRC-50, respectively (Figures 4.16a and 4.16b). This difference is 

due to the higher acidity of Duolite C-464 (pK=5.5) than IRC-50 (pK=6.1). No 

improvement in minimum pH was observed in carbonic acid-regenerated columns. 

The pH minima were still about 3.5. The shift of the minimum pH was longer in 

Duolite C-464 than in IRC-50, indicating that Duolite C-464 is more difficult to 

regenerate with carbonic acid than IRC-50. The model broth also contained divalent 

cations (Mg^"^ and Mn^"^), amino acids, and peptides, which could not be desorbed 

easily by carbonic acid. At 1724 kPa, the pH of carbonic acid solution is only 3.3 
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(Meyssami etal., 1992). The concentration is not high enough to effectively 

regenerate the column. 

Recovery of lactic acid from acidified broth by using basic sorbents 

Riedei-de-Haen VI-15. The resin column required 6 BV of acidified broth to 

reach saturation (Figure 4.17). At this point, the bed volume increased by 30%. No 

glucose was detected in the water-rinse effluent after 4 BV. About 55% of the total 

lactic acid in the column went out with the rinse water. In practice, this fraction can be 

recycled back to the adsorption column since the pH was still low - even lower than 

the pH of the acidified broth. The slightly lower pH in the rinse effluent indicated that 

some adsorbed lactic acid was also eluted. 

The lactic acid was completely desorbed with 6.8 BV of methanol. The highest 

lactic acid concentration of the effluent was 31 mg/mL, which would be the expected 

concentration of lactic acid during desorption in a countercurrent operation. A cloudy 

effluent was observed near the end of the first bed-volume of the methanol eluant, 

which could be due to the shrinking of the sorbent beads upon contact with methanol. 

The shrinking excludes the liquid from the sorbent including the micropores. Because 

the micropores are accessible to smaller ions but not to lactic acid, the cloudiness may 

have been caused by other salts (such as sulfates) that are insoluble in methanol. 

The cloudy fractions contained 29% of the total lactic acid recovered from the 

column. These fractions were not included in the pool that was subsequently 

concentrated. The concentrated product contained 98% lactic acid and 0.05% 

glucose. The viscous product had a very light yellow tint but was not turbid. The 

jr.. 
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chromatogram (Figure 4.18) shows that, aside from glucose, small amounts of other 

impurities (retention times of 4.86, and 11.16 to 14.23 min) were also present. Peaks 

with retention times of 9.05 and 9.54 min were originally present in the lactic acid 

solution used and were possibly lactides. The presence of readily carbonizable 

residues was verified by the positive result (formation of brown layer at the interface of 

sulfuric acid and lactic acid) of the sulfuric acid test. 

The column was rinsed with 1 M NaOH to remove broth components not 

desorbed by methanol. The rinse effluent collected was yellow. The chromatogram 

(Figure 4.19) shows that, aside from lactic acid (retention time 9.93 min) and methanol 

(retention time 14.11 min), other components were strongly adsorbed by the resin. 

The dominant broth component retained in the resin had a retention time of 4.66 min. 

These results suggested that the column required periodic regeneration with a strong 

base to remove these strongly bound broth components to restore its capacity. A 30% 

decrease in column capacity for lactic acid was observed after a ten-cycle run without 

NaOH rinse. 

The shrinking of the sorbent during desorption also led to compaction of the 

sorbent in the column and a decrease in sorption capacity since the beads cannot 

swell freely. The sorbent had to be loosened by backwashing with water at high flow 

rate to prevent compaction of the sorbent bed during the next loading cycle. The 

backwashing step also removed the methanol remaining in the column. 

Dowex MWA-1. The resin column reached saturation after 3.5 BV of 

acidified broth (Figure 4.20), which is about half the volume needed to saturate the 
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Riedel-de-Haen VI-15 column. The faster sorption on MWA-1 was the combined 

effect of its having a macroporous matrix and a more basic functional group compared 

with Riedel-de-Haen VI-15. The rinse effluent was free of glucose after 3 BV and the 

lactic acid concentration at this point was around 4 mg/mL. About 51 % of the total 

lactic acid in the column after loading came out with the rinse water. The column 

adsorbed 72 mg lactic acid/mL resin (310 mg/g dry resin). 

Methanol was not effective in desorbing lactic acid from Dowex MWA-1 column 

despite the higher temperature (50°C) used. Only 64% of the adsorbed lactic acid 

was recovered after 4.5 BV. The maximum concentration of lactic acid in the eiuate 

was only 21 mg/mL. The cloudy fractions, which contained 12% of the total lactic acid 

recovered, were not included in the pool that was concentrated. The concentrated 

lactic acid was cloudy and yellow. The chromatogram (Figure 4.21) of the product 

shows that no glucose was present, but other broth components (retention times 6.52, 

8.15, and 10.98 to 15.61 min) were detected. The sulfuric acid test for readily 

carbonizable residues also came out positive. Since no glucose was detected, the 

other impurities found in the concentrated lactic acid product were also readily 

carbonizable residues. 

When 5% NH^OH was used as the desorbent, 100% recovery was attained in 

1.5 BV of eluant (Figure 4.22). The maximum concentration was 113 mg/mL, about 

50% higher than the lactic acid concentration in the feed. However, NH4OH also 

desorbed other broth components (retention times 4.44 to 8.35 min) adsorbed by the 

resin (Figure 4.23), resulting in a product with more impurities than the one desorbed 
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with methanol. The sulfuric acid test for readily carbonizable residues also turned out 

positive, despite the absence of glucose. 

Amberlite IRA 35 column. The Amberlite IRA-35 column required about the 

same amount of acidified broth (3.2 BV) as Dowex MWA-1 to reach saturation (Figure 

4.24). The rinse effluent was free of glucose after about 3 BV and the lactic acid 

concentration at this point was about 1 mg/mL. About 48% of the lactic acid in the 

column was washed out with the rinse water. The column adsorbed 75 mg/mL resin 

(410 mg/g dry resin). Methanol eluted only 18% of the adsorbed lactic acid after 5 

BV. The maximum lactic acid concentration in the effluent was 5 mg/mL. The 

chromatogram of the eluted lactic acid revealed that no glucose was present but other 

broth components (retention times 4.96 to 8.45 and 11.47 to 15.65 min) were also 

eluted (Figure 4.25). The sulfuric acid test for readily carbonizable residue was also 

positive despite the dilute concentration of lactic acid used in the test. 

The much lower recovery of lactic acid from Amberlite IRA-35 by methanol was 

not surprising since Amberlite IRA-35 has a higher pKg (Gustafson et al., 1970; Clifford 

and Weber, 1983) and higher association constant (K) for lactic acid than MWA-1 

(Tung, 1993). These earlier studies explained that the styrene ring and the quaternary 

ammonium group in MWA-1 have base-weakening effects on the amine group. In 

contrast, the aliphatic backbone and the presence of carboxylates in IRA-35 increase 

the basicity of the amine group. 



www.manaraa.com

Water Methanol Lactic acid 

Glucose 

12 14 16 0 2 4 6 8 10 

Bed volume 

Figure 4.24. Effluent profile for IRA-35 column with methanol as desorbent 



www.manaraa.com

Lactic acid 

ooco ^ 

V—rrr'-'V^ 

r-« 
Dr<< tr> * r-~ r>4ir>r>.04 •»->» • • « • • • r-jr»4r^K>ro •*-

\tf TTtrmiT^ 

est r-4 r4 »•> 

Time (min) 

Figure 4.25. Chromatogram of lactic acid eiuted by methanol from IRA-35 column 
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Section summary 

Duolite C-464 was able to reduce the pH of the broth from 4.5 to 2.9, but 

produced only 0.4 BV of partially decolorized acidified broth. Lactic acid dilution was 

about 1.5 times but this concentration was still above the level (10 mg/mL) needed to 

achieve maximum capacity of Riedel-de-Haen VI-15, Dowex MWA-1, and Amberlite 

IRA-35. However, to generate 1 BV of feed stream for basic sorbent, the acidifying 

column must be 2.5 times the size of the lactic acid sorption column. 

Methanol eluted lactic acid from Riedel-de-Haen VI-15 completely but with 

significant dilution. Methanol and NH4OH also desorbed other broth components 

adsorbed by the sorbent, thus some impurities remained in the product. Another 

problem that needs to be addressed is the cloudy effluent obtained at the beginning of 

the desorption cycle of Riedel-de-Haen VI-15 and MWA-1 columns. 

The recovery scheme employed was not sufficient to produce pure lactic acid. 

Pretreatment of the broth and/or a polishing step(s) is necessary to improve the purity 

of the product. 

Use of basic sorbent to control the pH in continuous fermentation has been 

suggested by several researchers (Yates, 1981; Srivastava etal., 1992; Tsao etal., 

1993). As demonstrated earlier, the sorbents also adsorb other broth components. 

These compounds could be nutrients needed by the microorganisms, and therefore, 

must be replenished continuously. Since the sorbent is also exposed directly to 

untreated broth, fouling may be a big problem. 
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Broth Pretreatment 

In the preceding section, it was learned that broth components other than lactic 

acid also bind to the basic sorbent. Furthermore, these broth components were eluted 

with lactic acid during desorption and Impurities remained In the final product. 

Because the two-stage purification did not result in heat-stable lactic acid, the process 

was modified to include broth pretreatment. The modified process consists of four 

main steps; (1) broth pretreatment, (2) broth acidification, (3) adsorption on basic 

sorbent, and (4) lactic acid concentration (Figure 4.26). This phase of the study 

Investigated the possibility of removing the undesirable broth components before 

reaching the final lactic acid sorption step. Broth pretreatments such as browning 

reaction, decolorization using activated carbon, and by using nonfunctlonalized resins 

were explored. 

Browning and activated carbon treatment 

The Increase in brown color in the broth after heating close to boiling (95°C) for 

5 h was due to caramellzation and/or Maillard reaction. The Maillard reaction requires 

reducing sugars and amino group-bearing compounds such as amino acid, peptide 

and protein. The amino group must be unprotonated for the carbonyl-amine 

condensation reaction to occur. The rate of browning increases with Increasing pH up 

to about pH 10, with little, if any, browning occurring below pH 6 (Ashoor and Zent, 

1984). Caramellzation, on the other hand, results from heating of glucose. Heating 

glucose at about pH 4 produces polymeric or condensed-ring compounds (Whistler 

and Daniel, 1985). 
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Figure 4.26. Modified scheme for lactic acid recovery and purification 
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During heating, the broth with an initial pH of 10 turned brown much faster and 

the color was much darker than the one with a pH of 4.5. The pH of the basic broth 

at the end of heating time decreased to 5.3, whereas that of the acidic broth remained 

the same. The significant pH decrease of the basic broth was caused by NH3 

liberated during heating. 

The glucose concentration in the broth browned at basic pH was 58% lower 

than that in the starting broth while lactic acid concentration remained the same. The 

chromatograms of the broth before and after heat treatment (Figure 4.27) show that 

several new compounds were formed, with peaks A, B, C, and D being the most 

prominent. Some compounds present originally show an increase in peak heights 

(retention times 4.52, 4.83, and 5.79 min). There was also a reduction of the peak 

(9.2 min retention time) on the left shoulder of the lactic acid peak. 

The glucose concentration in the browned broth with a pH of 4.5 was 32% 

lower than the initial broth. Since little or no Maillard reaction is expected to occur at 

pHs lower than 6, the color change observed could be attributed largely to 

caramelization. The chromatograms (Figure 4.28) show that new compounds (peaks 

A and B) similar to those obsen/ed in browned basic broth were also present, but in 

much smaller quantities. 

The activated carbon decolorized the model broth and browned broths 

effectively. However, the activated carbon sorbed 103 and 109 mg lactic acid/mL of 

bed from unheated broth and browned broth (both at pH 4.5), respectively. The 

saturation points were not achieved even after 2 BV of decolorized broth (Figures 

4.29a and 4.29b). The amount of lactic acid sorbed from broth with a pH of 5.3 was 
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Figure 4.27. Chromatograms of model lactic acid broth (pH 10) (a) before, and (b) after heating for 5 h 
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Figure 4.28. Chromatograms of model lactic acid broth (pH 4.5) (a) before, and (b) after heating for 5 h 
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Figure 4.29. Effluent profiles of (a) unhealed lactic acid broth (pH 4.5), 
and browned broths at (b) pH 4.5 and (c) pH 5.3 on 
activated carbon column 
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about 80 mg/mL of bed and saturation was achieved after 0.5 BV of decolorized broth 

(Figure 4.29c). 

The chromatograms (Figures 4.30 to 4.32) of the activated carbon column 

effluent show that browning and activated carbon treatment had no significant 

advantage over decolorized unheated broth as far as removal of undesirable broth 

components is concerned. Browning at basic pH generated more problem compounds 

(peaks designated as A) close to lactic acid peak (Figure 4.32) and were not removed 

completely by activated carbon. These peaks were not present in the decolorized 

unheated broth and browned broth at pH 4.5. (Figures 4.30 and 4.31). 

Broth pretreatment by using nonfunctionalized resins 

The three nonfunctionalized resins used were all effective in decolorizing the 

broth. The columns (except Duolite S-761 column, which was brown in color) 

progressively turned darker as the broth flowed through, indicating that colored 

compounds were being adsorbed. Amberlite XAD-16, Diaion HP-2MG, and Duolite S-

761 retained 62, 110, and 105 mg lactic acid/ml of bed, respectively. Since these 

resins are nonfunctionalized and the pH of the effluent basically remained the same as 

that of the feed (Figure 4.33), the lactic acid retained by the columns was mostly 

unbound and can be recovered readily by rinsing the columns with water. The 

chromatograms of column effluent appeared to be the same as that of the feed 

(Figures 4.34 to 4.36). The columns were rinsed with methanol after washing the 

column with at least 3 BV of deionized water. The methanol eluate was golden in 

color. Methanol was evaporated at low temperature from the fraction with the darkest 
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Figure 4.30. Chromatogram of unhealed broth effluent from activated carbon column 
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Figure 4.31. Chromatogram of browned broth (pH 4.5) effluent from activated carbon column 
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Figure 4.32. Chromatogram of browned broth (pH 10) effluent from activated carbon column 
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Column effluent (bed volume) 
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Figure 4.33. Effluent profiles of model lactic acid broth in (a) Duolite S-761, 
(b) Diaion HP-2MG, and (c) Amberlite XAD 16 columns 
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Figure 4.34. Chromatograms of model lactic acid broth (a) before, and (b) after passing 
through Amberllte XAD 16 column 
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Figure 4.35. Chromatograms of model lactic acid broth (a) before, and (b) after passing 
through Diaion HP-2I\^G column 
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Figure 4,36. Chromatograms of model lactic acid broth (a) before, and (b) after passing 
through Duolite S-761 column 
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color and analyzed by HPLC. The chromatograms show that the dominant peak, 

common to all three resins, has a retention time of about 14.2 min (Figures 4.37 to 

4.39). This is the most likely compound responsible for the yellowish color of the 

broth. Methanol also desorbed two other components (retention times 9.12 and 9.58 

min) right before the lactic acid peak from Amberlite XAD-16 (Figure 4.37). However, 

the binding capacity of XAD-16 for these compounds is apparently very small since 

they were still present In the column effluent (Figure 4.34b). Other broth components 

(retention times 4.57 and 4.72 min) were also adsorbed by Amberlite XAD-16 but not 

by the other two resins. 

The hydrophilic resin, Duolite S-761, appeared to be more selective for the 

smaller compounds (peaks that appear towards the end of the chromatogram), 

adsorbing other compounds not picked up by the hydrophobic Amberlite XAD-16 resin. 

The moderately polar Diaion HP-2MG behaved more like Duolite S-761 resin. Among 

the three non-functionalized resins, Amberlite XAD-16 had more impact on purification, 

specifically, its ability to pick up compounds very close to lactic acid. 

Section summary 

Browning may be beneficial in producing heat-stable lactic acid by reducing, if 

not eliminating, glucose and other readily carbonizable compounds from the broth. 

However, browning also created new compounds that may create more separation 

problems. The heat-treated broth must be close to neutral pH to minimize sorption of 

lactic acid on activated carbon. Activated carbon was very effective in decolorizing the 

broth. 
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Figure 4.37. Chromatogram of methanol rinse from Amberlite XAD 16 after model lactic acid broth sorption 
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Figure 4.38. Chromatogram of methanol rinse from Diaion HP-2MG after model lactic acid broth sorption 
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Figure 4.39. Chromatogram of methanol rinse from Duolite S-761 after model lactic acid broth sorption 
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Among the nonfunctionalized sorbents, Amberlite XAD-16 was able to adsorb 

more broth components than Duolite S-761 or Diaion HP-2MG, especially the problem 

compounds. The XAD-16 can also be used as precolumn for styrene-DVB-based ion 

exchangers. Duolite S-761 adsorbed other broth components that Amberlite XAD 16 

did not. A combination of XAD-16 and Duolite S-761 will be able to adsorb a wide 

range of colored and other undesirable broth components 

Proposed Lactic Acid Recovery and Purification Scheme 

Based on the results of the pretreatment study, the lactic acid recovery scheme 

was revised to include two broth pretreatment steps (Figure 4.40). The cell-free broth 

was decolorized by using activated carbon, followed by sorption of hydrophobic 

compounds on Amberlite XAD-16. The Amberlite XAD-16 column also served as a 

precolumn for the cation exchanger. The weak-acid sorbent (Duolite C-464) was 

replaced with a strong cation exchanger (Dowex XUS 40406) to increase the volume 

of acidified broth. Riedel-de-Haen VI-15 was used as the weak-base sorbent. The 

resulting product obtained from this process was crystal clear even after evaporating 

methanol. The product was analyzed by HPLC and the chromatogram (Figure 4.41) 

shows no glucose peak, but three other peaks other than the lactic acid were present. 

One of the three peaks was probably residual methanol (retention time 14.19 min), 

while the other two were originally present in the lactic acid used in making the model 

broth. The result of the test for readily carbonizable substances was negative. 

The outlined process was applied to the purification of lactic acid from "real" 

fermentation broth produced by repeat-fed-batch fermentation of glucose by 
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Figure 4.40. Proposed process for lactic acid recovery and purification 
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Lactobacillus easel (ATCC 11443). The broth was centrifuged (5000 x gfor 10 min) to 

remove the cells. The cell-free broth had a pH of 5.3 and contained 5.5% lactate and 

0.1% glucose. The decolorized broth was still cloudy and remained hazy even after 

acidification. The strong cation exchange resin column produced 1 BV of acidified 

broth with a pH of 1.95. At this pH, 99% of the lactic acid is in free acid form. The 

methanol eluate from VI-15 was colorless but turned cloudy once methanol was 

evaporated. The HPLC chromatogram revealed that no glucose was present but 

some large compounds (peaks in void volume) and smaller compounds (after the 

lactic acid peak) were still present. The test for readily carbonizable substances also 

came out positive. 

The failure to produce heat-stable lactic acid from real fermentation broth was 

attributed to inadequate broth pretreatment, as manifested by the hazy acidified broth. 

The fermentation broth was more complex than the model broth. The contaminants 

that were not removed during the broth pretreatment steps were also sorbed by 

Riedel-de-Haen VI-15 resin. These contaminants were not removed completely during 

the water rinse step, either because of insufficient rinse time or the strong interaction 

with the resin. Incorporating a precolumn for Riedel-de-Haen VI-15 column may 

improve the purity of the product. This precolumn may be part of a stratified bed with 

Amberlite XAD-16 or employed as a separate unit after the acidification step. 

The product purity can be improved with further process optimization. 

Employing a less-swelling macroporous Riedel-de-Haen VI-15 instead of the gel-type 

resin used in this study may decrease uptake of broth contaminants by pore filling and 

improve the efficiency of the rinse and desorption steps. 
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V. GENERAL SUMMARY AND CONCLUSIONS 

Weak- (Reillex 425 and Riedel-de-Haen VI-15), moderate- (Dowex MWA-1, 

Dowex WGR-2, Dowex XUS 40283, and Dowex XUS 43432), and strong-(Dowex XUS 

40196 and Amberlite IRA-958) base resins were evaluated for their sorption capacities 

of lactic acid from solutions with different pHs. Composite isotherms and fixed-bed 

sorption indicated that the sorption capacities of weak- and moderate-base resins 

decreased markedly as the pH of the feed exceeded the pKg of lactic acid. Weak- and 

moderate-base sorbents should be used at feed pH below the pKg of lactic acid (3.86) 

to minimize leakage of lactate from the column. 

Riedel-de-Haen VI-15 exhibited significantly greater sorption capacity for lactic 

acid than Reillex 425. Dowex XUS 40196 can be used in a broader pH range with no 

significant reduction in capacity. The moderate- and strong-base resins had higher 

capacities for lactic acid, but required stronger eluants to desorb the lactic acid. 

Riedel-de-Haen VI-15 was the most attractive sorbent for lactic acid recovery 

because of its high capacity and the ease by which it can be regenerated by using 

low-boiling alcohols. However, for this resin to be effective, the broth must be acidified 

first, but not by adding mineral acid, which competes with lactic acid for sorption sites. 

Another undesirable characteristic of this resin is its excessive swelling during sorption 

and shrinking during elution with methanol. The increase in internal void volume only 

increases sorption of other broth components by pore filling. These impurities, if not 

removed during the rinse step, may be trapped inside or may elute slowly with lactic 

acid as the bead shrinks once the resin comes in contact with methanol. 
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Duolite C-464, a weak-acid cation exchanger, was effective in decolorizing the 

broth but produced only 0.4 BV acidified broth with the desired pH of 2.9 from broth 

with a pH of 4.5. To generate 1 BV of feed stream for basic sorbent, the column must 

be 2.5 times the size of the lactic acid sorption column. Dowex XUS 40406, a strong-

acid cation exchanger, produced 1 BV of acidified broth with pH 1.9. 

Carbonic acid employed at 1724 kPa and 65°C was unable to regenerate 

Duolite C-464 and Amberlite IRC-50. The ineffectiveness of carbonic acid 

regeneration can be attributed to the low concentration of H"" in carbonic acid solution, 

and presence of divalent cations and positively charged organic compounds in the 

broth. Carbonic acid may be better utilized by applying it directly in the broth. 

However, carbonic acid acidification alone may not be able to produce the low pH 

level desired. A combination of carbonic acid and strong cation exchange acidification 

will minimize consumption of sulfuric acid and generation of ammonium sulfate waste 

during regeneration of the cation exchanger. 

Methanol completely desorbed lactic acid from Riedel-de-Haen VI-15 even at 

ambient temperature, but the elution required about 7 BV of methanol, which produced 

an eluate with half the lactic acid concentration than that of the feed. Methanol did not 

completely desorb lactic acid from Dowex MWA-1 and Amberlite IRA-35. NH4OH 

desorbed lactic acid from Dowex MWA-1 in less than 2 BV and will probably be just as 

effective with Amberlite IRA-35. However, methanol and NH4OH also desorbed other 

broth components that were adsorbed by the sorbent; thus, some impurities still 

remained in the product. The cloudy effluent at the beginning of the desorption cycle 

of Riedel-de-Haen VI-15 column indicated that the recovery scheme employed was not 
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sufficient to produce pure lactic acid. Pretreatment of the broth and/or a polishing 

step(s) is necessary to improve the purity of the product. 

The browning reaction may be beneficial in producing heat-stable lactic acid by 

reducing, if not eliminating, glucose and other readily carbonizable compounds from 

the broth. The heat-treated broth must have close to neutral pH to minimize sorption 

of lactic acid on activated carbon. Browning, however, produced new compounds that 

create additional purification problems. 

Among the nonfunctionalized sorbents, the hydrophobic Amberlite XAD-16 

adsorbed more broth components than the hydrophilic Duolite S-761 or the moderately 

non-polar Diaion HP-2MG. However, Duolite S-761 also adsorbed other broth 

components that Amberlite XAD-16 did not. 

Based on the results described in the preceding sections, a process for the 

recovery and purification of lactic acid from fermentation broth was evaluated. The 

scheme involved broth pretreatment by using activated carbon and nonfunctionalized 

resin as precolumns. A strong cation exchanger effectively acidified the broth without 

introducing competing acids. Lactic acid was recovered from the dilute acidified broth 

by using weak-base sorbent. The sorbed acid was then eluted by using a low-boiling 

alcohol (methanol) that can be evaporated readily and reused. With process 

optimization, a high-purity, heat-stable lactic acid can be produced. Another problem 

that needs to be addressed is improving the physical stability of the sorbent. 

Excessive swelling and shrinking of the sorbent during loading and desorption cycles 

make it susceptible to attrition. 
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VI. RECOMMENDATIONS 

One of the objectives of the study was to develop a method that would 

minimize salt generation in the waste stream. Employing a strong-acid cation 

exchanger in acidifying ammonium lactate broth results in the production of 

ammonium sulfate when the column is regenerated with sulfuric acid. The amount of 

ammonium sulfate produced can be lessened by incorporating a carbonic acid 

acidification step before the cation exchange acidification step of the proposed 

process. Lowering the pH of the feed stream further will reduce the frequency of 

column regeneration. The pressure and temperature for carbonic acid broth 

acidification have to be optimized. 

Another possibility of improving the proposed process is to run the acidified 

broth through a chromatographic separation step by using a nonfunctionalized resin as 

described by Kulprathipanja (1988). Water will be used as eluant, so no additional 

separation problem is created. This step is expected to greatly reduce the undesirable 

broth components going into the lactic acid adsorption by basic sorbent. 

The evaluation of the proposed process for the recovery and purification of 

lactic acid was mainly qualitative in nature. No attempt was made to identify the so-

called problem compounds. Identifying these compounds may lead to strategies to 

minimize, if not eliminate, their presence in the broth. Other resins with similar basicity 

as Riedel-de-Haen VI-15 but with hydropohobic and macroporous matrix are also 

worth investigating. 
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APPENDIX 

Nomenclature 

Batch sorption data 

W - dry weight of the resin (g). 

Co - concentration of lactic acid in the initial solution (mg/mL). 

C, - concentration of lactic acid in the bulk solution at equilibrium 

(mg/mL). 

q - lactic acid sorbed by the resin (mg/g dry resin). 

pH - bulk solution pH at equilibrium. 

HLa - concentration of free lactic acid in the bulk solution at equilibrium 

calculated by using the Henderson-Hasselbach equation (mg/mL). 

Fixed-bed sorption data 

V, - volume of fraction (mL). 

V^p - cummulative average volume (mL). 

C, - concentration of lactic acid in the fraction (mg/mL). 
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Data 

Table A.I. Total capacities of basic sorbents for HCI 

Weight Moisture Bed 
Capacity for HCL 
(meq/g dry resin) 

Resin (g) Content 
(%) 

Height 
(cm) 

Weak 
base 

Strong-
base 

Total 

Reillex 425 5.006 53.6 11.6 6.2 - 6.2 
5.000 53.6 12.7 6.1 - 6.1 

Riedel-de- 5.001 63.8 8.7 8.0 8.0 
Haen VI-15 5.001 63.8 9.1 7.9 - 7.9 

Dowex 5.040 59.2 10.2 4.3 0.6 4.9 
MWA-1 5.040 59.2 10.2 4.4 0.5 4.9 

Dowex 5.053 31.4 19.1 8.3 . 8.3 
WGR-2 5.002 36.5 22.6 8.3 - 8.3 

Dowex XUS 5.023 50.0 9.6 4.4 1.0 4.5 
40283 5.013 50.0 9.9 4.6 1.0 4.7 

Dowex XUS 5.011 33.3 9.6 2.9 1.3 4.2 
43432 5.043 33.3 9.7 3.1 1.2 4.3 

Dowex XUS 5.046 62.1 9.1 3.6 1.0 4.6 
40196 5.040 62.1 9.0 3.6 1.0 4.6 

Amberlite 5.012 52.8 6.6 2.2 1.2 3.4 
IRA- 958 5.017 52.8 5.1 2.2 1.3 3.5 
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Table A.2. Experimental data for composite sorption isotherm of lactic acid in Reillex 
425 

Initial Sample W Co Cf q pH HLa 
PH No. (g) (mg/mL) (mg/mL) (mg/g) (mg/mL) 

2.83 1 1.008 2.392 0.809 15.706 3.29 0.64 

2 1.006 5.706 2.505 31.837 3.22 2.04 

3 1.009 6.921 3.046 38.408 3.21 2.49 

4 1.009 9.124 4.300 47.821 3.17 3.57 

5 1.004 18.380 10.002 83.418 3.12 8.46 

6 1.003 26.142 16.617 94.989 3.08 14.25 

7 1.004 45.136 31.322 137.658 3.03 27.29 

8 1.006 62.412 44.476 178.294 3.01 38.97 

9 1.004 98.868 74.497 242.719 2.96 66.17 

10 1.001 123.065 96.045 269.847 3.03 83.67 

11 1.007 142.140 111.959 299.866 3.04 97.24 

4.83 1 1.009 2.733 2.074 6.538 5.20 0.09 

2 1.008 5.208 4.801 4.041 5.24 0.19 

3 1.008 7.765 7.258 5.030 5.26 0.28 

4 1.000 10.150 10.034 1.160 5.26 0.38 

5 1.002 29.304 28.996 3.079 5.19 1.30 

6 1.005 51.378 50.933 4.434 5.15 2.48 

7 1.003 71.589 71.563 0.257 5.14 3.57 

8 1.005 86.056 85.922 1.337 5.12 4.48 
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Table A.3. Experimental data for composite sorption isotherm of lactic acid in Riedel-
de-Haen VI-15 

Initial Sample W Co Cf q pH HLa 
pH No. (g) (mg/mL) (mg/mL) (mg/g) (mg/mL) 

1 1.004 2.392 0.000 23.815 4.62 0.00 

2 1.006 5.706 0.617 50.592 4.80 0.06 

3 1.008 6.921 0.703 61.680 4.84 0.07 

4 1.006 9.124 0.962 81.104 4.74 0.11 

5 1.007 18.380 2.736 155.342 4.43 0.58 

6 1.006 26.142 9.046 169.903 4.20 2.84 

7 1.007 45.136 25.135 198.564 3.73 14.43 

8 1.008 62.412 34.699 275.071 3.51 23.98 

9 2.005 79.653 53.557 260.262 3.21 43.76 

10 2.007 100.839 70.892 296.466 3.17 58.87 

11 1.008 123.065 94.863 279.898 3.28 75.11 

12 1.008 142.140 110.316 315.589 3.24 88.97 

13 1.007 146.912 116.761 299.410 3.18 96.58 

1 1.004 2.361 1.230 11.261 5.77 0.02 

2 1.003 5.586 2.974 26.040 5.86 0.03 

3 1.006 8.026 4.334 36.701 5.89 0.04 

4 1.004 11.477 6.338 51.182 5.81 0.07 

5 1.002 23.645 14.016 96.098 5.46 0.34 

6 1.008 31.531 19.405 120.302 5.16 0.93 

7 1.008 49.011 32.528 163.517 4.90 2.72 

8 1.007 67.789 47.933 197.177 4.65 6.69 

9 1.005 91.352 68.555 226.837 4.54 11.85 

10 1.006 111.548 86.909 244.921 4.50 16.20 

11 1.005 149.695 122.737 268.237 4.47 24.19 

1 1.008 2.715 2.534 1.796 7.86 0.00 

2 1.007 5.662 5.300 3.591 7.69 0.00 

3 1.008 8.391 8.093 2.953 7.58 0.00 

4 1.002 11.064 10.795 2.684 7.57 0.00 

5 1.003 21.207 20.635 5.699 7.35 0.01 

6 1.000 31.713 31.183 5.290 7.19 0.02 

7 1.006 54.265 53.714 5.470 6.94 0.04 

8 1.008 76.096 75.525 5.663 6.79 0.09 
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9 1.006 92.709 89.957 27.368 6.70 0.13 

10 1.009 121.929 118.916 29.851 6.52 0.26 

11 1.005 143.951 141.827 21.132 6.35 0.46 

1 1.006 1.094 2.034 1.752 7.16 0.00 

2 1.002 2.625 2.431 1.935 7.93 0.00 

3 1.001 5.113 4.322 1.848 7.17 0.00 

4 1.007 10.741 10.928 -1.855 7.69 0.00 

5 1.008 21.425 21.703 -2.758 7.55 0.00 

6 1.005 35.147 36.900 -17.443 7.57 0.01 

7 1.002 53.397 54.993 -15.939 7.55 0.01 

8 1.003 78.757 82.298 -35.299 7.56 0.02 

9 1.002 105.866 110.369 -44.925 7.53 0.02 
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Table A.4. Experimental data for composite sorption isotherm of lactic acid in Dowex 
MWA-1 

Initial Sample W Co Cf q pH HLa 
pH No. (g) (mg/mL) (mg/mL) (mg/g) (mg/mL) 

2.83 1 2.040 2.343 0.212 20.888 7.35 0.00 

2 2.039 6.016 0.550 53.623 7.17 0.00 

3 2.039 7.264 0.737 64.036 7.15 0.00 

4 2.028 9.602 0.898 85.837 6.62 0.00 

5 2.027 18.843 2.122 165.007 5.41 0.06 

6 2.028 28.285 3.308 246.336 4.88 0.29 

7 2.026 47.336 12.771 341.137 3.60 8.24 

8 2.059 66.501 29.390 360.449 3.32 22.81 

9 2.038 85.242 47.528 370.031 3.11 40.35 

10 2.036 103.183 65.344 371.596 3.19 53.84 

11 2.017 129.280 91.572 373.914 - -

12 2.030 148.878 110.320 379.829 - -

3.83 1 2.026 3.434 1.335 20.707 8.14 0.00 

2 2.029 6.567 2.647 38.643 8.05 0.00 

3 2.016 8.419 4.133 42.521 7.91 0.00 

4 2.019 11.195 5.600 55.773 7.97 0.00 

5 2.033 21.942 12.241 95.428 7.66 0.00 

6 2.034 32.727 18.468 140.178 6.85 0.02 

7 2.020 52.311 30.557 215.378 6.14 0.16 

8 2.041 74.215 44.786 288.363 5.22 1.87 

9 2.020 100.796 68.107 323.590 4.50 12.69 

10 2.033 120.715 87.655 325.299 4.32 22.57 

4.83 1 2.030 2.958 1.866 10.756 8.96 0.00 

2 2.024 5.579 4.156 14.062 8.97 0.00 

3 2.005 9.048 6.585 24.564 8.86 0.00 

4 2.020 11.072 9.054 19.980 8.67 0.00 

5 2.026 21.121 18.402 26.868 8.57 0.00 

6 2.035 31.612 28.045 35.035 7.86 0.00 

7 2.018 55.505 49.834 56.234 7.31 0.02 

8 2.005 77.701 70.197 74.838 7.23 0.03 

9 2.016 91.135 84.152 69.264 8.38 0.00 

10 2.016 122.482 113.827 85.901 7.95 0.01 
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11 2.023 144.731 132.944 116.547 - -

1 2.031 1.227 0.630 5.879 8.88 0.00 

2 2.005 2.631 1.823 8.060 9.00 0.00 

3 2.024 5.409 4.032 13.607 8.93 0.00 

4 2.007 10.679 9.054 16.186 8.88 0.00 

5 2.023 21.304 19.130 21.495 8.59 0.00 

6 2.024 35.479 33.387 20.673 8.20 0.00 

7 2.020 53.334 51.293 20.195 8.24 0.00 

8 2.036 79.269 76.868 23.580 7.91 0.01 

9 2.029 105.587 103.671 18.890 7.85 0.01 

10 2.027 129.666 127.254 23.808 8.14 0.01 
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Table A.5. Experimental data for composite sorption isotherm of lactic acid in Dowex 
WGR-2 

Initial Sample W Co Cf q pH HLa 
pH No. (g) (mg/mL) (mg/mL) (mg/g) (g/mL) 

2.83 1 1.003 2.334 0.345 19.826 9.36 0.00 

2 1.003 5.829 0.779 50.346 7.94 0.00 

3 1.004 6.981 0.843 61.133 7.56 0.00 

4 1.004 9.268 1.073 81.624 6.92 0.00 

5 1.005 18.452 2.245 161.266 5.44 0.06 

8 1.006 27.246 4.852 222.605 4.60 0.75 

7 1.003 44.077 11.534 324.454 3.75 6.49 

8 1.005 63.620 25.802 376.294 3.41 19.05 

9 1.002 80.017 42.491 374.507 3.25 34.12 

10 1.005 99.840 64.540 351.248 3.17 53.60 

11 1.001 126.333 88.258 380.369 3.18 73.00 

12 1.001 144.440 104.774 396.265 3.14 88.00 

3.83 1 1.002 2.620 1.263 13.539 10.17 0.00 

2 1.007 5.490 2.772 26.995 9.87 0.00 

3 1.003 8.100 4.309 37.794 9.71 0.00 

4 1.004 10.913 5.904 49.886 9.38 0.00 

5 1.003 21.426 11.977 94.205 7.93 0.00 

6 1.002 31.253 17.698 135.283 7.58 0.00 

7 1.004 51.438 28.339 230.065 5.96 0.22 

8 1.008 70.197 41.987 279.862 5.18 1.92 

9 1.005 97.715 60.994 365.379 4.65 8.51 

10 1.006 116.489 78.596 376.667 4.44 16.37 

11 1.003 153.291 114.176 389.977 4.42 24.66 

4.83 1 1.005 2.724 2.142 5.789 10.87 0.00 

2 1.005 5.436 4.093 13.363 11.20 0.00 

3 1.003 8.078 6.564 15.094 11.06 0.00 

4 1.006 10.607 9.006 15.915 11.07 0.00 

5 1.006 20.381 18.517 18.532 10.94 0.00 

6 1.008 30.511 27.534 29.530 10.94 0.00 

7 1.007 52.821 50.216 25.864 10.25 0.00 

8 1.004 73.842 71.807 20.267 9.12 0.00 

9 1.003 89.380 85.044 43.228 8.46 0.00 
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10 1.005 119.530 114.747 47.591 8.14 0.01 

11 1.006 139.018 136.631 23.727 8.06 0.01 

1 1.006 1.000 0.722 2.762 10.76 0.00 

2 1.006 2.416 1.786 6.266 11.04 0.00 

3 1.007 4.810 4.011 7.937 11.15 0.00 

4 1.004 10.205 8.704 14.945 11.46 0.00 

5 1.003 20.499 17.913 25.779 11.49 0.00 

6 1.003 33.952 31.047 28.966 11.68 0.00 

7 1.009 51.027 48.885 21.231 11.76 0.00 

8 1.003 76.527 72.949 35.675 11.63 0.00 

9 1.003 101.760 98.264 34.859 11.56 0.00 

10 1.006 125.930 122.506 34.040 11.45 0.00 
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Table A.6. Experimental data for composite sorption isotiierm of lactic acid in Dowex 
XUS 40283 

Initial Sample W Co Cf q pH HLa 
pH No. (g) (mg/mL) (mg/mL) (mg/g) (mg/mL) 

2.83 1 1.007 2.392 0.000 23.751 6.68 0.00 

2 1.002 5.706 0.347 53.504 5.60 0.01 

3 1.004 6.921 0.483 64.135 5.87 0.00 

4 1.003 9.124 0.606 84.943 5.62 0.01 

5 1.005 18.380 1.575 167.188 5.21 0.07 

6 1.004 26.142 2.315 237.391 4.78 0.24 

7 1.003 45.136 10.939 340.942 3.59 6.05 

8 1.007 62.412 28.976 332.119 3.27 23.00 

9 1.004 80.412 45.833 344.323 3.14 39.01 

10 1.002 98.868 63.310 354.740 3.08 54.50 

11 1.006 123.065 89.557 333.219 3.10 76.50 

12 1.004 142.140 107.246 347.723 3.06 93.55 

3.83 1 1.003 2.575 0.782 17.865 7.77 0.00 

2 1.002 5.392 2.385 30.011 6.47 0.01 

3 1.006 7.764 3.838 39.031 7.30 0.00 

4 1.002 10.551 4.977 55.655 7.18 0.00 

5 1.002 20.759 10.362 103.723 6.88 0.01 

6 1.002 30.336 16.179 141.333 6.57 0.03 

7 1.005 49.840 27.895 218.453 5.91 0.25 

8 1.003 68.688 41.118 274.762 5.06 2.48 

9 1.004 94.288 64.544 296.346 4.46 12.87 

10 1.001 111.885 83.119 287.287 4.30 21.69 

11 1.003 146.844 118.178 285.678 4.32 30.71 

4.83 1 1.003 2.733 1.524 12.056 8.35 0.00 

2 1.006 5.208 3.510 16.871 8.24 0.00 

3 1.003 7.765 5.819 19.410 8.20 0.00 

4 1.005 10.150 8.331 18.115 8.20 0.00 

5 1.004 19.554 17.035 25.084 8.01 0.00 

6 1.003 29.304 25.501 37.926 7.78 0.00 

7 1.004 51.378 47.825 35.433 7.73 0.01 

8 1.003 86.056 80.308 57.339 7.53 0.02 

9 1.002 134.085 128.302 57.740 7.30 0.05 
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1 1.004 0.906 0.470 6.231 8.23 0.00 

2 1.003 2.209 1.585 8.105 8.53 0.00 

3 1.003 4.507 3.702 10.780 8.51 0.00 

4 1.004 9.666 8.530 14.552 8.55 0.00 

5 1.005 19.574 19.373 6.960 8.56 0.00 

6 1.002 74.300 75.322 10.749 8.32 0.00 

7 1.004 97.650 98.682 19.489 8.21 0.00 

8 1.003 121.740 124.016 12.872 8.20 0.01 
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Table A.7. Experimental data for composite sorption isotherm of lactic acid in Dowex 
XUS 43432 

Initial Sample W Co Cf q pH HLa 
No. (g) (mg/mL) (mg/mL) (mg/g) (mg/mL) 

1 1.007 2.392 0.317 21.228 7.29 0.00 

2 1.001 5.706 0.722 51.882 7.02 0.00 

3 1.008 6.921 0.789 62.546 7.01 0.00 

4 1.005 9.124 1.288 80.424 6.89 0.00 

5 1.006 18.380 2.020 164.127 6.28 0.01 

6 1.002 26.142 3.082 240.565 5.24 0.09 

7 1.003 45.136 13.020 330.542 3.58 7.92 

8 1.004 62.412 30.420 339.661 3.29 22.82 

9 1.006 80.412 48.328 338.815 3.20 38.50 

10 1.005 98.868 65.776 349.583 3.15 53.59 

11 1.002 123.065 90.418 364.836 3.20 71.31 

12 1.007 142.140 107.920 372.145 3.18 85.79 

1 1.006 2.575 1.312 14.449 8.11 0.00 

2 1.002 5.392 2.407 31.563 8.11 0.00 

3 1.004 7.764 2.555 55.473 8.10 0.00 

4 1.004 10.551 3.221 75.352 8.07 0.00 

5 1.003 20.759 11.759 92.580 7.90 0.00 

6 1.002 30.336 16.388 145.830 7.69 0.00 

7 1.003 49.840 28.709 216.513 7.12 0.02 

8 1.006 68.688 42.497 278.300 5.42 1.09 

9 1.004 94.288 65.792 299.468 4.58 10.03 

10 1.005 111.885 84.203 298.195 4.44 16.84 

11 1.007 146.844 121.550 290.267 4.47 23.20 

1 1.005 2.733 1.212 14.956 8.69 0.00 

2 1.007 5.208 4.143 12.340 8.64 0.00 

3 1.005 7.765 5.556 24.696 8.65 0.00 

4 1.004 10.150 7.671 28.360 8.60 0.00 

5 1.004 19.554 16.536 35.153 8.45 0.00 

6 1.005 29.304 25.759 45.216 8.42 0.00 

7 1.002 51.378 47.027 57.665 8.30 0.00 

8 1.002 71.589 68.146 53.878 8.26 0.00 
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10 1.002 
11 1.005 

5.83 1 1.005 

2 1.004 

3 1.002 

4 1.005 

5 1.007 

6 1.008 
7 1.000 

8 1.003 

134 

86.056 83.542 45.128 8.20 0.00 

117.140 109.894 92.773 8.14 0.01 

134.085 130.598 82.801 8.04 0.01 

0.906 0.000 9.012 8.75 0.00 

2.209 0.822 13.820 9.05 0.00 

4.507 3.137 13.680 9.07 0.00 

9.666 7.122 25.315 9.21 0.00 

19.574 17.183 23.743 9.14 0.00 

32.764 30.076 26.669 9.03 0.00 

48.657 47.113 15.435 9.03 0.00 

74.300 71.399 28.916 8.84 0.00 
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Table A.8. Experimental data for composite sorption isotherm of lactic acid in Dowex 
XUS 40196 

Initial Sample W Co Cf q pH HLa 
pH No. (g) (mg/mL) (mg/mL) (mg/g) (mg/mL) 

2.0 1 1.002 7.272 0.003 72.516 7.15 0.00 

2 1.002 10.060 0.028 100.154 4.47 0.01 

3 1.001 14.999 1.575 134.075 2.79 1.45 

4 1.002 24.743 9.991 147.236 2.34 9.70 

5 1.001 39.587 22.725 168.431 2.14 22.30 

6 1.002 57.155 37.753 193.717 2.03 37.20 

7 1.001 77.145 55.254 218.667 1.91 54.64 

8 1.002 95.442 72.165 232.314 1.85 71.47 

9 1.002 116.199 90.299 258.515 1.79 89.54 

10 1.001 137.238 108.896 283.076 1.73 108.10 

2.8 1 1.002 2.616 0.049 25.627 11.32 0.00 

2 1.002 4.992 0.087 48.950 11.56 0.00 

3 1.001 7.789 0.241 75.390 11.61 0.00 

4 1.007 10.506 0.517 99.227 11.52 0.00 

5 1.001 15.683 1.976 136.890 4.10 0.72 

6 1.001 25.710 10.471 152.232 3.23 8.48 

7 1.002 40.777 21.319 194.246 3.10 18.16 

8 1.001 57.485 36.699 207.657 3.00 32.25 

9 1.001 79.402 56.300 230.745 2.95 50.13 

10 1.001 99.514 72.727 267.576 2.95 64.76 

3.8 1 1.001 2.571 0.137 24.313 12.08 0.00 

2 1.001 5.074 0.490 45.802 12.30 0.00 

3 1.003 7.309 1.060 62.321 12.39 0.00 

4 1.002 10.009 2.067 79.242 12.43 0.00 

5 1.002 15.238 4.897 103.233 12.32 0.00 

6 1.001 24.880 11.234 136.343 11.65 0.00 

7 1.001 37.192 21.172 160.040 4.47 4.17 

8 1.002 57.071 38.415 186.234 4.12 13.62 

9 1.002 78.034 56.355 216.301 4.01 23.36 

10 1.002 96.985 73.292 236.528 3.98 31.62 
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1 1.002 2.737 0.638 20.936 8.40 0.00 

2 1.000 5.278 1.867 34.110 8.32 0.00 

3 1.000 8.053 3.465 45.879 8.33 0.00 

4 0.999 10.728 5.345 53.857 8.74 0.00 

5 1.000 15.778 8.948 68.312 7.93 0.00 

6 1.000 24.987 16.389 85.997 7.64 0.00 

7 1.000 40.746 30.713 100.349 7.35 0.01 

8 1.000 62.075 50.195 118.785 7.15 0.03 

9 1.000 83.570 70.966 126.044 7.08 0.04 

10 1.000 104.694 92.067 126.258 6.25 0.37 

11 1.000 126.333 112.538 137.904 6.21 0.50 

12 1.000 141.494 129.026 124.680 6.39 0.38 

1 1.001 2.557 0.630 19.250 10.02 0.00 

2 0.999 5.057 1.908 31.506 9.74 0.00 

3 1.001 7.691 3.422 42.657 9.62 0.00 

4 1.000 10.211 5.309 49.037 9.36 0.00 

5 1.001 15.058 8.905 61.483 7.83 0.00 

6 1.000 24.359 16.723 76.367 6.37 0.05 

7 1.000 39.600 30.320 92.777 4.05 11.90 

8 1.000 58.499 48.257 102.475 3.74 27.44 

9 1.000 75.458 67.869 75.906 3.60 43.80 

10 0.999 94.208 83.812 104.031 3.51 57.93 

11 1.000 113.789 103.202 105.927 3.49 72.34 

12 0.999 138.317 126.103 122.205 3.46 90.20 
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Table A.9. Experimental data for composite sorption isotherm of lactic acid in 
Amberlite IRA-958 

Initial Sample W Co Cf q pH HLa 
pH No. (g) (mg/mL) (mg/mL) (mg/g) (mg/mL) 

1 1.006 2.274 0.922 13.452 10.57 0.00 

2 1.006 7.041 2.756 42.598 10.03 0.00 

3 1.001 9.420 4.190 52.248 9.77 0.00 

4 1.008 18.531 8.029 104.180 8.61 0.00 

5 1.001 28.337 11.916 164.114 6.23 0.05 

6 1.007 43.000 27.792 151.039 3.80 14.85 

7 1.008 64.813 45.226 194.321 3.52 31.04 

8 1.004 100.839 80.447 203.092 3.29 63.39 

9 1.006 129.630 106.612 228.867 3.28 84.41 

10 1.007 146.761 122.485 240.977 3.24 98.79 

1 1.003 2.665 1.326 13.346 10.84 0.00 

2 1.008 5.586 3.015 25.508 10.61 0.00 

3 1.002 8.432 4.685 37.407 10.48 0.00 

4 1.005 11.271 6.493 47.543 10.33 0.00 

5 1.001 22.101 14.272 78.245 9.85 0.00 

6 1.009 32.174 22.600 94.908 9.03 0.00 

7 1.008 53.026 39.311 136.097 7.95 0.00 

8 1.001 71.706 58.296 133.932 4.83 5.64 

9 1.009 101.140 82.611 183.693 4.44 17.20 

10 1.003 121.105 105.613 154.517 4.31 27.66 

11 1.006 159.730 142.647 169.900 4.33 36.10 

1 1.003 2.715 1.441 12.700 11.32 0.00 

2 1.002 5.662 3.305 23.532 11.28 0.00 

3 1.001 8.391 5.394 29.932 11.21 0.00 

4 1.008 11.064 7.500 35.360 11.20 0.00 

5 1.009 21.207 15.773 53.862 11.03 0.00 

6 1.002 31.713 25.409 62.908 10.90 0.00 

7 1.003 54.265 47.662 65.802 10.62 0.00 

8 1.008 76.096 69.646 63.979 10.36 0.00 
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1 1.006 1.094 0.633 4.579 11.49 0.00 

2 1.008 2.625 1.362 12.529 11.49 0.00 

3 1.007 5.113 3.165 19.343 11.49 0.00 

4 1.006 10.741 7.308 34.115 11.47 0.00 

5 1.009 21.425 16.067 53.126 11.47 0.00 

6 1.001 35.147 29.119 60.212 11.45 0.00 

7 1.000 53.397 45.851 75.451 11.53 0.00 

8 1.005 78.757 71.780 69.431 11.42 0.00 
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Table A.10. Experimental data for fixed-bed sorption of lactic acid in Reillex 425 column 

Fraction 
No. 

pH 2.0 pH 3.8 pH 4.4 pH 5.8 Fraction 
No. Vf Vmp Cf Vf Vmp Cf Vf Vmp Cf Vf Vmp Cf 

1 5.2 2.6 0.000 1.5 0.8 0.000 1.8 0.9 0.000 2.2 1.1 0.000 

2 5.1 7.7 3.585 1.9 2.5 0.000 1.9 2.7 0.000 2.3 3.4 0.000 

3 4.8 12.6 32.982 1.9 4.4 6.006 1.8 4.5 6.030 2.4 5.7 23.466 

4 4.6 17.3 54.834 1.9 6.2 25.860 1.8 6.3 34.971 2.4 8.1 55.362 

5 4.6 21.9 58.461 1.8 8.1 34.038 1.8 8.1 48.081 2.3 10.5 57.726 

6 4.8 26.6 59.085 1.8 9.9 35.763 1.8 9.9 50.199 2.4 12.8 57.954 

7 4.7 31.3 59.073 1.8 11.7 38.565 1.9 11.7 50.691 2.4 15.2 59.445 

8 4.7 36.0 58.716 1.8 13.5 43.845 1.8 13.5 49.857 2.4 17.6 59.208 

9 4.6 40.7 58.695 1.8 15.3 45.900 1.8 15.3 50.904 2.4 20.0 59.610 

10 4.7 45.3 59.283 1.8 17.1 49.980 1.8 17.0 52.407 2.4 22.4 57.888 

11 4.7 50.0 58.560 1.8 18.9 53.286 1.8 18.8 53.475 2.4 24.8 59.745 

12 4.7 54.7 59.103 1.8 20.6 54.078 1.8 20.6 54.822 2.4 27.2 57.633 

13 4.7 59.4 59.298 1.8 22.4 55.296 1.8 22.4 55.662 2.5 29.7 58.386 

14 4.7 64.1 59.271 1.8 24.1 55.998 1.8 24.1 56.382 2.4 32.1 58.632 

15 4.6 68.8 59.067 1.8 25.9 57.333 1.8 25.9 56.634 2.4 34.5 58.242 

16 4.8 73.4 58.950 1.8 27.6 57.828 1.8 27.6 57.126 2.4 36.9 59.076 

17 4.7 78.2 59.337 1.8 29.4 57.954 1.8 29.4 56.847 2.4 39.3 57.987 

18 4.7 82.9 58.818 1.8 31.1 58.425 1.8 31.2 57.768 2.5 41.8 59.454 

19 4.5 87.5 58.548 1.8 32.9 57.810 1.8 32.9 57.159 2.4 44.2 59.718 

20 3.5 91.5 58.644 1.8 34.6 57.888 1.9 34.7 58.383 2.4 46.6 58.371 



www.manaraa.com

Table A.11. Experimental data for fixed-bed sorption of lactic acid In RIedel-de-Haen VI-15 column 

Fraction 
No. 

pH 2.0 pH 3.8 pH 4.4 pH 5.8 Fraction 
No. Vf Vmp Cf Vf Vmp Cf Vf Vmp Cf Vf Vmp Cf 

1 2.2 1.1 0.000 2.1 1.1 0.000 2.1 1.1 0.000 2.1 1.1 0.000 

2 2.2 3.3 0.000 2.2 3.2 0.000 2.1 3.2 0.000 2.1 3.2 0.000 

3 2.2 5.5 0.000 2.1 5.4 2.372 2.2 5.3 1.800 2.1 5.3 0.000 

4 2.2 7.7 0.000 2.1 7.5 16.981 2.2 7.5 20.679 2.1 7.4 16.125 

5 2.2 9.9 0.000 2.2 9.6 31.374 2.2 9.7 45.666 2.1 9.5 48.516 

6 2.2 12.1 0.000 2.1 11.8 34.643 2.2 11.9 50.286 2.1 11.6 57.691 

7 2.2 14.3 0.000 2.2 13.9 35.403 2.2 14.1 50.784 2.1 13.7 59.052 

8 2.1 16.5 0.000 2.2 16.1 35.805 2.2 16.3 51.513 2.2 15.8 58.422 

9 2.1 18.6 0.000 2.2 18.3 35.707 2.2 18.5 51.372 2.2 18.0 59.172 

10 2.1 20.7 2.253 2.2 20.5 36.371 2.2 20.7 51.723 2.2 20.2 59.010 

11 2.2 22.8 18.111 2.2 22.7 35.979 2.2 22.9 51.645 2.2 22.4 58.743 

12 2.1 25.0 32.107 2.1 24.9 36.784 2.2 25.1 51.288 2.2 24.6 59.583 

13 2.2 27.1 40.010 2.1 27.0 36.806 2.2 27.3 51.332 2.2 26.8 58.923 

14 2.2 29.3 44.571 2.2 29.1 36.859 2.3 29.6 51.595 2.2 29.0 60.105 

15 2.2 31.5 47.973 2.2 31.3 37.460 2.3 31.9 52.472 2.2 31.2 58.320 

16 2.1 33.7 50.699 2.2 33.5 36.781 2.3 34.2 52.392 2.2 33.4 59.520 

17 2.1 35.8 51.570 2.1 35.7 37.146 2.2 36.4 51.846 2.3 35.7 59.595 

18 2.1 37.9 52.765 2.1 37.8 39.494 2.2 38.6 51.579 2.2 37.9 59.739 

19 2.2 40.0 55.065 2.1 39.9 42.752 2.2 40.8 52.127 2.2 40.1 59.685 

20 2.2 42.2 55.659 2.2 42.0 45.971 2.2 43.0 52.015 2.2 42.3 58.928 

21 2.3 44.5 57.450 2.1 44.2 48.868 2.2 45.2 51.915 2.2 44.5 59.922 
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22 2.3 46.8 58.492 2.2 46.3 52.514 

23 2.2 49.0 59.517 2.2 48.5 53.143 

24 2.3 51.3 59.198 2.2 50.7 55.491 

25 2.2 53.5 59.965 2.2 52.9 55.693 

26 2.3 55.8 62.211 2.2 55.1 56.470 

27 2.2 58.0 59.727 2.2 57.3 57.535 

28 2.2 60.2 60.430 2.2 59.5 57.988 

29 2.2 62.4 59.782 2.2 61.7 58.307 

30 2.2 64.6 60.291 2.2 63.9 59.564 

31 2.2 66.8 60.028 2.1 66.1 59.634 

32 2.3 69.1 59.958 2.2 68.2 59.204 

33 2.2 71.3 59.868 2.2 70.4 59.568 

34 2.2 73.5 59.544 2.2 72.6 60.134 

35 2.2 75.7 59.591 2.2 74.8 60.359 

36 2.3 78.0 59.662 2.2 77.0 59.976 

37 2.2 80.2 59.904 2.2 79.2 60.157 

38 2.2 82.4 60.086 2.2 81.4 60.296 

39 2.2 84.6 59.954 2.3 83.7 59.531 

40 2.2 86.8 73.008 2.2 85.9 60.867 

41 - - - 2.2 88.1 61.058 

42 - - - 2.2 90.3 59.603 

43 

44 

45 

2.2 47.4 52.610 2.2 46.7 59.142 

2.3 49.7 51.828 2.3 49.0 59.658 

2.2 51.9 51.867 2.2 51.2 58.929 

2.2 54.1 52.463 2.2 53.4 60.000 

2.3 56.4 51.381 2.3 55.7 59.493 

2.2 58.6 51.795 2.1 57.9 60.037 

2.2 60.8 52.449 2.1 60.0 58.923 

2.2 63.0 52.158 2.2 62.1 59.763 

2.3 65.3 51.702 2.2 64.3 59.121 

2.3 67.6 51.759 - - -

2.2 69.8 51.864 - - -

2.2 72.0 52.404 - - -

2.2 74.2 52.362 - - -

2.2 76.4 52.962 - - -

2.3 78.7 52.992 - - -

2.2 80.9 52.761 - - -

2.2 83.1 54.189 - - -

2.3 85.4 53.607 - - -

2.1 87.6 54.435 - - -

2.1 89.7 54.276 - - -

2.2 91.8 55.080 - - -

2.2 94.0 55.398 - - -

2.2 96.2 55.527 - - -

2.2 98.4 55.602 - - -
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Table A.12. Experimental data for fixed-bed sorption of lactic acid in Dowex MWA-1 column 

Fraction pH 2.0 pH 3.8 pH 4.4 pH 5.9 
No. Vf Vmp Cf Vf Vmp Cf Vf Vmp Cf Vf Vmp Cf 

1 2.5 1.2 0.000 2.5 1.3 0.000 2.4 1.2 0.000 2.5 1.3 0.000 

2 2.5 3.7 0.000 2.5 3.8 0.712 2.4 3.6 0.000 2.5 3.8 1.063 

3 2.5 6.1 0.000 2.5 6.3 16.632 2.4 6.0 19.147 2.5 6.3 31.590 

4 2.5 8.6 0.000 2.5 8.8 29.280 2.4 8.4 42.269 2.5 8.8 50.993 

5 2.5 11.0 0.000 2.5 11.3 32.182 2.4 10.8 47.176 2.5 11.3 54.349 
6 2.5 13.5 2.005 2.5 13.8 33.496 2.4 13.2 49.581 2.5 13.8 55.291 
7 2.5 15.9 17.955 2.5 16.3 33.832 2.4 15.6 48.939 2.5 16.3 56.293 
8 2.5 18.4 30.999 2.5 18.8 34.658 2.4 18.0 50.606 2.5 18.8 56.766 

9 2.5 20.8 49.076 2.5 21.3 34.908 2.4 20.4 51.059 2.5 21.3 56.306 

10 2.5 23.3 54.070 2.5 23.8 35.854 2.4 22.8 49.601 2.5 23.8 57.217 

11 2.5 25.7 54.967 2.5 26.3 38.762 2.4 25.2 50.960 2.5 26.3 56.675 

12 2.5 28.2 55.729 2.5 28.8 42.712 2.4 27.6 51.256 2.5 28.8 56.912 

13 2.5 30.6 57.409 2.5 31.3 46.148 2.4 30.0 49.948 2.5 31.3 57.098 

14 2.5 33.1 57.682 2.5 33.8 48.322 2.4 32.4 51.405 2.5 33.8 56.898 
15 2.5 35.5 58.127 2.5 36.3 51.088 2.4 34.8 51.341 2.5 36.3 57.650 

16 2.5 38.0 57.763 2.5 38.8 52.540 2.4 37.2 49.691 2.5 38.8 56.898 

17 2.5 40.4 57.562 2.5 41.3 53.968 2.4 39.6 51.122 2.5 41.3 56.872 
18 2.5 42.9 57.298 2.5 43.8 55.048 2.4 42.0 51.707 2.5 43.8 56.703 

19 2.5 45.3 57.380 2.5 46.3 56.598 2.4 44.4 50.651 2.5 46.3 57.330 

20 2.5 47.8 57.886 2.5 48.8 56.442 2.4 46.8 52.838 2.5 48.8 57.257 

21 2.5 50.2 58.004 2.5 51.3 57.584 2.4 49.2 53.788 2.5 51.3 57.807 

22 2.5 52.7 57.963 2.5 53.8 57.600 2.4 51.6 53.138 2.5 53.8 57.659 
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23 2.5 55.1 57.889 2.5 56.3 57.660 

24 2.5 57.6 57.934 2.5 58.8 59.794 

25 2.5 60.0 58.006 2.5 61.3 59.974 

26 2.5 62.5 58.168 2.5 63.8 58.462 

27 2.5 64.9 56.617 2.5 66.3 57.570 

28 2.5 67.4 56.188 2.5 68.8 58.160 

29 2.5 69.8 58.599 2.5 71.3 57.720 

30 2.5 72.3 58.057 2.5 73.8 58.892 

31 2.5 74.7 58.141 2.5 76.3 57.744 

32 2.5 77.2 58.201 2.5 78.8 58.094 

33 2.5 79.6 58.234 2.5 81.3 57.600 

34 2.5 82.1 58.365 2.5 83.8 58.800 

35 2.5 84.5 58.326 2.5 86.3 56.630 

36 2.5 87.0 57.725 2.5 88.8 56.054 

37 2.5 89.4 58.458 2.5 91.3 58.412 

38 2.5 91.9 58.156 2.5 93.8 58.318 

39 2.5 94.3 57.797 2.5 96.3 57.860 

40 2.5 96.8 57.683 2.5 98.8 57.282 

2.4 54.0 55.988 2.5 56.3 57.287 

2.4 56.4 56.540 2.5 58.8 57.018 
2.4 58.8 55.721 2.5 61.3 57.534 
2.4 61.2 58.010 2.5 63.8 57.183 

2.4 63.6 58.974 2.5 66.3 56.955 

2.4 66.0 57.307 2.5 68.8 56.692 
2.4 68.4 60.670 2.5 71.3 57.062 

2.4 70.8 62.452 2.5 73.8 57.368 

2.4 73.2 59.584 2.5 76.3 56.848 
2.4 75.6 61.642 2.5 78.8 58.576 
2.4 78.0 61.581 2.5 81.3 57.664 

2.4 80.4 59.603 2.5 83.8 56.730 
2.4 82.8 61.892 2.5 86.3 57.036 

2.4 85.2 61.826 2.5 88.8 57.130 
2.4 87.6 60.006 2.5 91.3 56.856 
2.4 90.0 61.839 2.5 93.8 57.422 
2.4 92.4 60.954 2.5 96.3 57.685 
2.4 94.8 59.781 2.5 98.8 57.233 
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Table A.I 3. Experimental data for fixed-bed sorption of lactic acid in Dowex WGR-2 column 

Fraction 
No. 

pH 2.0 pH 3.8 pH 4.4 pH 5.9 Fraction 
No. Vf Vmp Cf Vf Vmp Cf Vf Vmp Cf Vf Vmp Cf 

1 2.8 1.4 0.000 2.5 1.25 0.000 2.5 1.25 0.000 2.1 1.1 0.000 

2 2.8 4.1 0.000 2.5 3.8 0.000 2.5 3.8 0.000 2.1 3.2 6.388 
3 2.8 6.9 0.000 2.5 6.3 10.056 2.5 6.3 3.540 2.1 5.3 35.126 

4 2.8 9.6 0.000 2.5 8.8 23.274 2.5 8.8 23.772 2.1 7.4 52.612 
5 2.8 12.4 0.000 2.5 11.3 31.209 2.5 11.3 39.141 2.1 9.5 57.553 

6 2.8 15.1 0.000 2.5 13.8 33.642 2.5 13.8 43.229 2.1 11.6 59.775 
7 2.8 17.9 0.000 2.5 16.3 35.037 2.5 16.3 44.934 2.1 13.7 60.857 
8 3.3 20.9 30.402 2.5 18.8 34.278 2.5 18.8 45.543 2.1 15.8 61.149 

9 2.5 23.8 54.690 2.5 21.3 34.932 2.5 21.3 45.468 2.1 17.9 58.199 

10 2.5 26.3 58.740 2.5 23.8 35.355 2.5 23.8 46.065 2.1 20.0 58.679 

11 2.5 28.8 59.976 2.5 26.3 35.337 2.5 26.3 46.317 2.1 22.1 61.571 

12 2.5 31.3 60.375 2.5 28.8 36.489 2.5 28.8 46.008 2.1 24.2 58.628 

13 2.5 33.8 59.673 2.5 31.3 38.748 2.5 31.3 46.218 2.1 26.3 59.442 

14 2.5 36.3 60.684 2.5 33.8 43.554 2.5 33.8 45.435 2.1 28.4 58.259 

15 2.5 38.8 59.307 2.5 36.3 48.303 2.5 36.3 45.530 2.1 30.5 58.563 

16 2.5 41.3 59.850 ' 2.5 38.8 51.729 2.5 38.8 45.732 2.1 32.6 61.569 

17 2.3 43.6 59.808 2.5 41.3 54.789 2.5 41.3 45.993 2.1 34.7 62.147 

18 2.3 45.9 59.820 2.5 43.8 56.463 2.5 43.8 47.331 2.1 36.8 62.179 

19 2.3 48.1 59.601 2.5 46.3 58.050 2.5 46.3 46.812 2.1 38.9 58.410 

20 2.5 50.5 61.050 2.5 48.8 58.647 2.5 48.8 48.012 2.1 41.0 62.198 

21 2.5 53.0 59.262 2.5 51.3 58.632 2.5 51.3 48.579 2.1 43.1 59.088 

22 2.5 55.5 59.352 2.5 53.8 59.454 2.5 53.8 49.695 2.1 45.2 59.088 
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23 2.5 58.0 59.325 2.5 56.3 59.265 

24 2.5 60.5 60.018 2.5 58.8 59.778 

25 2.3 62.9 59.514 2.2 53.8 60.618 

26 2.3 65.1 60.015 2.5 63.8 59.412 

27 2.3 67.4 59.955 2.5 66.3 59.448 

28 2.3 69.6 59.301 2.5 68.8 59.148 

29 2.5 72.0 59.166 2.5 71.3 59.679 

30 2.5 74.5 59.925 2.5 73.8 59.460 

31 2.5 77.0 59.532 2.5 76.3 61.119 

32 2.5 79.5 59.709 2.5 78.8 59.880 

33 2.4 82.0 60.384 2.5 81.3 60.183 

34 - - - 2.5 83.8 60.411 

35 - - - 2.5 86.3 60.021 

36 - - - 2.5 88.8 60.129 

37 - - - 2.5 91.3 59.673 

38 - - - 2.5 93.8 62.901 

39 - - - 2-.5 96.3 59.676 

40 - - - 2.5 98.8 55.983 

2.5 56.3 51.296 2.1 47.3 60.343 

2.5 58.8 52.539 2.1 49.4 58.403 
2.2 53.8 53.928 2.1 51.5 60.404 

2.5 63.8 54.843 2.1 53.6 61.716 
2.5 66.3 55.866 2.1 55.7 62.240 
2.5 68.8 56.079 2.1 57.8 61.407 

2.5 71.3 57.486 2.1 59.9 62.076 

2.5 73.8 57.129 2.1 62.0 58.635 
2.5 76.3 57.216 2.1 64.1 61.938 
2.5 78.8 57.483 2.1 66.2 62.319 
2.5 81.3 58.278 2.1 68.3 58.633 
2.5 83.8 59.169 2.1 70.4 61.224 
2.5 86.3 58.101 2.1 72.5 61.904 
2.5 88.8 58.398 2.1 74.6 59.706 
2.5 91.3 57.612 2.1 76.7 61.732 
2.5 93.8 58.341 2.1 78.8 60.113 
- - - 2.1 80.9 59.388 
- - - 2.1 83.0 61.851 



www.manaraa.com

Table A.M. Experimental data for fixed-bed sorption of lactic acid in Dowex XUS 40283 column 

Fraction 
No. 

pH 2.0 pH 3.9 pH 4.4 pH 5.9 Fraction 
No. Vf Vmp Cf Vf Vmp Cf Vf Vmp Cf Vf Vmp Cf 

1 2.5 1.3 0.000 2.5 1.3 0.000 2.5 1.3 0.000 2.1 1.1 0.000 
2 2.5 3.8 0.000 2.5 3.8 18.578 2.5 3.8 23.265 2.1 3.2 6.282 

3 2.5 6.3 0.000 2.5 6.3 33.030 2.5 6.3 45.057 2.1 5.3 44.625 
4 2.5 8.8 9.749 2.5 8.8 38.205 2.5 8.8 47.430 2.1 7.4 57.479 

5 2.5 11.3 19.776 2.5 11.3 39.081 2.5 11.3 48.801 2.1 9.5 59.981 

6 2.5 13.8 28.191 2.5 13.8 43.228 2.5 13.8 49.257 2.1 11.6 57.290 

7 2.5 16.3 34.522 2.5 16.3 44.468 2.5 16.3 49.944 2.1 13.7 64.485 

8 2.5 18.8 39.966 2.5 18.8 46.073 2.5 18.8 50.559 2.1 15.8 62.819 
9 2.5 21.3 44.181 2.5 21.3 47.424 2.5 21.3 52.026 2.1 17.9 58.943 
10 2.5 23.8 47.404 2.5 23.8 48.503 2.5 23.8 51.609 2.1 20.0 57.090 

11 2.5 26.3 50.684 2.5 26.3 50.330 2.5 26.3 52.965 2.1 22.1 59.363 

12 2.5 28.8 53.299 2.5 28.8 50.917 2.5 28.8 53.862 2.1 24.2 63.465 

13 2.5 31.3 54.910 2.5 31.3 52.894 2.5 31.3 54.417 2.1 26.3 58.441 
14 2.5 33.8 56.622 2.5 33.8 52.845 2.5 33.8 55.392 2.1 28.4 58.460 
15 2.5 36.3 57.899 2.5 36.3 54.169 2.5 36.3 55.401 2.1 30.5 59.489 

16 2.5 38.8 58.782 2.5 38.8 54.547 2.5 38.8 54.528 2.1 32.6 63.520 

17 2.5 41.3 59.845 2.5 41.3 55.260 2.5 41.3 54.681 2.1 34.7 62.794 

18 2.5 43.8 60.387 2.5 43.8 55.598 2.5 43.8 56.313 2.1 36.8 59.891 

19 2.5 46.3 59.098 2.5 46.3 56.230 2.5 46.3 56.634 2.1 38.9 60.013 

20 2.5 48.8 61.976 2.5 48.8 58.098 2.5 48.8 56.892 2.1 41.0 62.825 

21 2.5 51.3 61.207 2.5 51.3 56.812 2.5 51.3 54.297 2.1 43.1 62.624 

22 2.5 53.8 61.707 2.5 53.8 57.722 2.5 53.8 56.466 2.1 45.2 60.158 
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23 2.5 56.3 61.494 2.5 56.3 58.325 

24 2.5 58.8 61.497 2.5 58.8 57.918 

25 2.5 61.3 62.381 2.5 61.3 59.112 

26 2.5 63.8 62.359 2.5 63.8 58.817 

27 2.5 66.3 61.943 2.5 66.3 59.830 

28 2.5 68.8 63.937 2.5 68.8 59.489 

29 2.5 71.3 62.694 2.5 71.3 59.856 

30 2.5 73.8 69.218 2.5 73.8 60.165 

31 2.5 76.3 63.599 2.5 76.3 60.952 

32 2.5 78.8 62.140 2.5 78.8 60.226 

33 - - - 2.5 81.3 60.778 

34 - - - 2.5 83.8 61.152 

35 - - - 2.5 86.3 60.756 

36 - - 2.5 88.8 61.227 

37 - - 2.5 91.3 62.237 

38 - - 2.5 93.8 61.894 

39 - - 2.5 96.3 61.526 

40 - - 2.5 98.8 61.367 

2.5 56.3 57.174 2.1 47.3 58.678 
2.5 58.8 58.014 2.1 49.4 65.489 
2.5 61.3 57.240 2.1 51.5 62.907 
2.5 63.8 57.477 2.1 53.6 65.876 
2.5 66.3 58.077 2.1 55.7 64.358 
2.5 68.8 57.969 2.1 57.8 63.115 
2.5 71.3 58.956 2.1 59.9 63.444 
2.5 73.8 58.701 2.1 62.0 65.030 
2.5 76.3 59.343 2.1 64.1 62.731 
2.5 78.8 59.742 2.1 66.2 62.958 
2.5 81.3 59.640 2.1 68.3 63.305 
2.5 83.8 59.163 2.1 70.4 60.003 
2.5 86.3 59.922 2.1 72.5 62.192 
2.5 88.8 60.072 2.1 74.6 59.558 
2.5 91.3 59.619 2.1 76.7 63.478 
2.5 93.8 60.360 2.1 78.8 59.627 
2.5 96.3 60.768 2.1 80.9 60.572 
2.5 98.8 59.862 2.1 83.0 61.373 
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Table A.15. Experimental data for fixed-bed sorption of lactic acid in Dowex XUS 43432 column 

Fraction 
No. 

pH 2.0 pH 3.9 pH 4.4 pH 5.9 Fraction 
No. Vf Vmp Cf Vf Vmp Cf Vf Vmp Cf Vf Vmp Cf 

1 2.5 1.3 0.000 2.5 1.3 0.000 2.5 1.3 0.000 2.1 1.1 0.000 

2 2.5 3.8 0.000 2.5 3.8 23.955 2.5 3.8 31.905 2.1 3.2 0.000 

3 2.5 6.3 15.699 2.5 6.3 32.847 2.5 6.3 42.597 2.1 5.3 32.337 

4 2.5 8.8 29.489 2.5 8.8 36.507 2.5 8.8 44.376 2.1 7.4 48.459 
5 2.5 11.3 34.240 2.5 11.3 38.679 2.5 11.3 46.227 2.1 9.5 52.290 

6 2.5 13.8 38.898 2.5 13.8 43.059 2.5 13.8 46.476 2.1 11.6 54.183 

7 2.5 16.3 41.943 2.5 16.3 45.156 2.5 16.3 47.843 2.1 13.7 55.536 
8 2.5 18.8 44.303 2.5 18.8 46.497 2.5 18.8 48.414 2.1 15.8 56.643 

9 2.5 21.3 46.058 2.5 21.3 48.904 2.5 21.3 49.584 2.1 17.9 56.295 
10 2.5 23.8 47.915 2.5 23.8 49.049 2.5 23.8 50.088 2.1 20.0 55.938 
11 2.5 26.3 49.621 2.5 26.3 50.034 2.5 26.3 51.417 2.1 22.1 57.378 
12 2.5 28.8 51.255 2.5 28.8 50.493 2.5 28.8 50.097 2.1 24.2 57.366 

13 2.5 31.3 51.947 2.5 31.3 52.280 2.5 31.3 52.826 2.1 26.3 57.552 

14 2.5 33.8 53.043 2.5 33.8 52.915 2.5 33.8 53.467 2.1 28.4 58.245 
15 2.5 36.3 53.802 2.5 36.3 53.004 2.5 36.3 52.884 2.1 30.5 58.248 

16 2.5 38.8 55.152 2.5 38.8 53.529 2.5 38.8 54.686 2.1 32.6 58.200 
17 2.5 41.3 55.816 2.5 41.3 53.823 2.5 41.3 54.655 2.1 34.7 57.156 

18 2.5 43.8 55.551 2.5 43.8 54.192 2.5 43.8 54.273 2.1 36.8 58.734 
19 2.5 46.3 57.743 2.5 46.3 54.861 2.5 46.3 54.090 2.1 38.9 59.544 

20 2.5 48.8 58.055 2.5 48.8 55.506 2.5 48.8 54.422 2.1 41.0 58.428 

21 2.5 51.3 57.923 2.5 51.3 54.558 2.5 51.3 54.731 2.1 43.1 58.431 

22 2.5 53.8 59.900 2.5 53.8 55.947 2.5 53.8 55.307 2.1 45.2 59.250 
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23 2.5 56.3 59.786 2.5 56.3 55.371 

24 2.5 58.8 59.535 2.5 58.8 56.004 

25 2.5 61.3 60.594 2.5 61.3 56.571 

26 2.5 63.8 60.426 2.5 63.8 56.304 

27 2.5 66.3 60.840 2.5 66.3 56.760 

28 2.5 68.8 61.086 2.5 68.8 56.301 

29 2.5 71.3 61.169 2.5 71.3 56.763 

30 2.5 73.8 62.431 2.5 73.8 56.862 

31 2.5 76.3 61.697 2.5 76.3 57.336 

32 2.5 78.8 60.724 2.5 78.8 57.582 

33 2.5 81.3 61.421 2.5 81.3 58.440 

34 2.5 83.8 61.157 2.5 83.8 58.140 

35 2.5 86.3 61.251 2.5 86.3 58.884 

36 2.5 88.8 61.171 2.5 88.8 58.977 

37 2.5 91.3 61.706 2.5 91.3 58.551 

38 2.5 93.8 61.146 2.5 93.8 58.866 

39 2.5 96.3 60.654 2.5 96.3 59.118 

40 2.5 98.8 61.965 2.5 98.8 59.172 

2.5 56.3 55.688 2.1 47.3 58.860 

2.5 58.8 55.604 2.1 49.4 58.851 
2.5 61.3 55.476 2.1 51.5 71.076 

2.5 63.8 56.133 2.1 53.6 59.607 
2.5 66.3 56.493 2.1 55.7 59.616 
2.5 68.8 55.956 2.1 57.8 58.572 
2.5 71.3 56.267 2.1 59.9 57.951 
2.5 73.8 55.911 2.1 62.0 57.816 
2.5 76.3 55.937 2.1 64.1 58.200 

2.5 78.8 56.582 2.1 66.2 58.182 
2.5 81.3 56.886 2.1 68.3 58.809 
2.5 83.8 56.993 2.1 70.4 57.987 
2.5 86.3 57.134 2.1 72.5 60.012 
2.5 88.8 56.963 2.1 74.6 61.242 
2.5 91.3 57.233 2.1 76.7 59.745 
2.5 93.8 57.129 2.1 78.8 58.584 
2.5 96.3 56.892 2.1 80.9 59.157 
2.5 98.8 56.994 2.1 83.0 61.236 
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Table A.16. Experimental data for fixed-bed sorption of lactic acid in Dowex XUS 40196 column 

Fraction 
No. 

pH 2.0 pH 3.9 pH 4.4 pH 5.9 Fraction 
No. Vf Vmp Cf Vf Vmp Cf Vf Vmp Cf Vf Vmp Cf 

1 2.0 1.0 0.000 2.0 1.0 0.000 1.6 0.8 0.000 2.1 1.1 0.000 

2 2.0 3.0 0.000 2.0 3.0 0.000 2.0 2.6 0.000 2.1 3.2 0.000 

3 2.0 5.0 0.000 2.0 5.0 0.000 2.0 4.6 0.000 4.1 6.3 0.000 
4 2.0 7.0 0.000 2.0 7.0 0.000 2.0 6.6 0.000 2.1 9.4 0.000 
5 2.0 9.0 0.000 2.0 9.0 0.000 2.0 8.6 0.000 2.0 11.4 9.144 
6 2.0 11.0 0.000 2.0 11.0 0.000 2.0 10.6 2.955 2.0 13.4 45.732 
7 2.0 13.0 0.000 2.2 13.1 11.082 2.1 12.7 30.414 2.1 15.5 54.048 
8 2.0 15.0 19.722 2.0 15.2 45.036 2.0 14.7 50.631 2.0 17.5 55.013 
9 2.0 17.0 52.434 2.0 17.2 55.200 2.0 16.7 54.084 2.0 19.5 55.268 

10 2.0 19.0 57.132 2.0 19.2 56.964 2.0 18.7 55.407 2.0 21.5 55.657 
11 2.0 21.0 57.972 2.0 21.2 57.783 2.0 20.7 54.984 2.0 23.5 55.664 

12 2.0 23.0 58.749 2.0 23.2 56.967 2.0 22.7 55.218 2.0 25.5 55.425 
13 2.0 25.0 58.734 2.0 25.2 57.444 2.0 24.7 56.604 2.0 27.5 55.161 

14 2.0 27.0 58.362 2.0 27.2 57.510 2.0 26.7 57.132 2.0 29.5 55.710 

15 2.0 29.0 59.127 2.0 29.2 58.023 2.0 28.7 55.899 2.0 31.5 56.061 

16 2.0 31.0 58.467 2.0 31.2 58.674 2.0 30.7 54.996 2.0 33.5 56.150 

17 2.0 33.0 59.547 2.0 33.2 57.029 2.0 32.7 55.677 2.0 35.5 55.223 

18 2.0 35.0 59.628 2.0 35.2 57.885 2.0 34.7 55.644 2.0 37.5 56.656 

19 2.0 37.0 58.863 2.0 37.2 58.695 2.0 36.7 57.147 2.0 39.5 56.421 

20 2.0 39.0 58.761 2.0 39.2 58.206 2.0 38.7 56.691 2.0 41.5 58.565 

21 2.0 41.0 58.788 2.0 41.2 58.992 2.0 40.7 56.226 2.0 43.5 56.647 

22 2.0 43.0 58.614 2.0 43.2 57.354 2.0 42.7 57.228 2.0 45.5 57.333 

23 2.0 45.0 59.028 2.0 45.2 58.710 2.0 44.7 57.489 2.0 47.5 56.871 
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24 2.0 47.0 59.055 2.0 47.2 57.453 

25 2.0 49.0 58.248 2.0 49.2 57.852 

26 2.0 51.0 58.869 2.0 51.2 57.471 

27 2.0 53.0 58.788 2.0 53.2 56.856 

28 2.0 55.0 58.764 2.0 55.2 57.606 

29 2.0 57.0 58.608 2.0 57.2 58.152 

30 2.0 59.0 59.178 2.0 59.2 57.051 
31 2.0 61.0 58.560 2.0 61.2 58.926 

32 2.0 63.0 59.073 2.0 63.2 58.158 
33 2.0 65.0 59.160 2.0 65.2 58.284 

34 2.0 67.0 58.968 2.0 67.2 59.076 

35 2.0 69.0 58.704 2.0 69.2 58.035 

36 - - - 2.0 71.2 58.047 

37 - - - 2.0 73.2 58.005 
38 - - - 2.0 75.2 58.812 

39 - - - 2.0 77.2 58.458 

40 - - - 2.0 79.2 59.760 

41 - - - 2.0 81.2 58.941 

42 - - - 2.0 83.2 59.049 

43 - - - 2.0 85.2 58.800 

44 - - - 2.0 87.2 58.305 

45 - - - 2.0 89.2 58.128 

46 - - - 2.0 91.2 59.456 

47 - - - 2.0 93.2 64.824 

48 - - - 2.0 95.2 59.586 

49 - - - 2.0 97.2 61.646 

50 - - - 2.0 99.2 58.134 

2.0 46.7 57.345 2.0 49.5 58.023 
2.0 48.7 57.486 2.0 51.5 56.328 
2.0 50.7 56.079 2.0 53.5 56.163 
2.0 52.7 56.933 2.0 55.5 58.311 
2.0 54.7 57.906 2.0 57.5 55.905 
2.0 56.7 58.086 2.0 59.5 56.543 
2.0 58.7 57.054 2.0 61.5 58.035 
2.0 60.7 58.187 2.0 63.5 57.630 
2.0 62.7 58.158 2.0 65.5 56.931 
2.0 64.7 57.462 2.0 67.5 57.613 
2.0 66.7 57.171 2.0 69.5 57.129 
2.0 68.7 57.132 2.0 71.5 57.878 
2.0 70.7 58.158 2.0 73.5 58.352 
2.0 72.7 58.668 2.0 75.5 56.484 
2.0 74.7 56.220 2.0 77.5 58.014 
2.0 76.7 57.606 2.0 79.5 57.887 
2.0 78.7 58.878 2.0 81.5 58.482 
2.0 80.7 57.579 - - -

2.0 82.7 59.133 - - -

2.0 84.7 59.154 - - -

2.0 86.7 58.191 - - -

2.0 88.7 57.444 - - -

2.0 90.7 58.599 - - -

2.0 92.7 57.684 - - -

2.0 94.7 59.067 - - -

2.0 96.7 59.772 - - -

2.0 98.7 59.799 - - -
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Table A.17. Experimental data for lactic acid recovery from model broth by using 
Riedel-de-Haen VI-15 

Feed - Model broth acidified by using Duolite C-464 
Eluant - Methanol 

Fraction 
No. 

Volume 
(mL) 

Avg. Cum. vol. 
Lactate 
(mg/mL) 

Glucose 
(mg/mL) 

PH Fraction 
No. 

Volume 
(mL) mL BV 

Lactate 
(mg/mL) 

Glucose 
(mg/mL) 

PH 

Feed 100 - - 58.351 7.006 2.90 

LI 4.5 2.3 0.2 0.000 0.000 5.08 

L2 4.7 6.9 0.6 2.801 0.406 6.83 

L3 5.0 11.7 1.0 6.393 5.161 4.99 

L4 4.9 16.7 1.4 9.263 7.638 6.17 

L5 4.9 21.6 1.8 9.853 7.946 6.42 

L6 4.8 26.4 2.2 10.112 8.059 6.82 

L7 4.8 31.2 2.6 20.826 7.781 3.70 

L8 4.9 36.1 3.0 36.157 7.430 3.29 

L9 4.9 41.0 3.4 42.659 7.116 3.17 

L10 4.8 45.8 3.8 50.393 7.451 3.10 

L11 4.8 50.6 4.2 53.344 7.398 -

L12- 4.8 55.4 4.6 51.789 6.880 -

L13 4.7 60.2 5.0 57.216 7.336 3.03 

LI 4 4.8 64.9 5.4 57.880 7.298 -

LI 5 4.7 69.7 5.8 57.479 7.163 -

LI 6 4.5 74.3 6.2 59.132 7.289 -

LI 7 4.4 78.7 6.6 59.200 7.306 3.00 

L18 4.3 83.1 6.9 60.703 7.383 -

LI 9 4.2 87.3 7.3 59.845 7.292 -

L20 4.2 91.5 7.6 60.164 7.266 -

L21 5.8 96.5 8.0 57.935 6.966 2.99 

R1 14.0 106.4 8.9 46.908 3.972 2.61 

R2 14.2 120.5 10.0 19.499 0.306 2.25 

R3 14.0 134.6 11.2 10.761 0.062 2.40 

metl 4.9 144.1 12.0 8.336 0.044 2.42 

met2 4.7 148.9 12.4 10.260 0.042 -

metS 5.4 153.9 12.8 28.835 0.038 2.90 
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met4 5.7 159.5 13.3 30.830 0.000 3.08 

met5 5.7 165.2 13.8 26.304 0.000 

mete 5.8 170.9 14.2 20.350 0.000 3.17 

met? 5.8 176.7 14.7 14.123 0.000 -

metS 5.7 182.5 15.2 9.062 0.000 -

met9 5.7 188.2 15.7 6.430 0.000 3.41 

metIO 5.5 193.8 16.1 4.829 0.000 -

met11 5.7 199.4 16.6 3.071 0.000 3.61 

met12 5.7 205.1 17.1 2.101 0.000 -

met13 5.7 210.8 17.6 1.586 0.000 -

met14 5.7 216.5 18.0 1.186 0.000 3.80 
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Table A.18. Experimental data for lactic acid recovery from model broth by using 
Dowex MWA-1 

Feed - Model broth acidified using Duolite C-464 
Eluant - Methanol 

Fraction 
No. 

Volume 
(mL) 

Avg. Cum. vol. 
Lactate 
(mg/mL) 

Glucose 
(mg/mL) 

PH Fraction 
No. 

Volume 
(mL) mL BV 

Lactate 
(mg/mL) 

Glucose 
(mg/mL) 

PH 

Feed - - - 75.117 8.345 2.78 

LI 4.8 2.4 0.1 0.000 0.000 7.22 

L2 4.9 7.3 0.4 0.000 0.000 10.19 

L3 4.8 12.1 0.7 0.278 1.004 12.45 

L4 4.6 16.8 1.0 3.035 8.105 12.16 

L5 4.7 21.5 1.2 7.929 9.413 9.81 

L6 4.6 26.1 1.5 8.775 9.378 9.03 

L7 4.7 30.8 1.8 10.571 9.475 4.70 

LB 4.5 35.4 2.0 42.972 8.978 3.17 

L9 4.4 39.8 2.3 68.509 8.682 2.89 

L10 4.4 44.2 2.6 75.337 8.482 2.84 

L11 4.4 48.6 2.8 73.660 7.960 -

L12 4.5 53.1 3.1 76.446 8.092 2.83 

LI 3 4.5 57.6 3.3 77.704 8.504 2.86 

L14 4.4 62.0 3.6 77.870 8.510 -

LI 5 4.4 66.4 3.8 77.868 8.511 2.82 

R1 8.2 72.7 4.2 73.758 7.652 2.79 

R2 8.4 81.0 4.7 42.586 2.371 2.51 

R3 8.5 89.5 5.2 17.276 0.382 2.27 

R4 8.6 98.0 5.7 8.346 0.060 2.40 

R5 8.7 106.7 6.2 4.859 0.013 2.53 

R6 8.8 115.4 6.7 3.264 0.005 2.62 

R7 9.0 124.3 7.2 2.540 0.000 2.68 

MeOH1 5.1 131.4 7.6 4.441 0.000 2.55 

MeOH2 4.8 136.3 7.9 4.863 0.000 2.52 

MeOH3 4.5 141.0 8.1 12.147 0.000 2.68 

MeOH4 4.2 145.3 8.4 21.379 0.000 3.11 

MeOHS 4.2 149.5 8.6 21.104 0.000 3.03 
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MeOH6 4.4 153.8 8.9 17.758 0.000 3.08 

MeOH7 4.2 158.1 9.1 15.510 0.000 3.13 

MeOH8 4.7 162.6 9.4 13.597 0.000 3.05 

MeOH9 3.3 166.6 9.6 12.094 0.000 -

MeOHIO 6.1 171.3 9.9 10.208 0.000 -

MeOHII 4.2 176.4 10.2 8.906 0.000 3.56 

MeOH12 4.2 180.6 10.4 7.641 0.000 -

MeOH13 4.2 184.8 10.7 7.082 0.000 -

MeOH14 4.2 189.0 10.9 6.092 0.000 3.31 

MeOH15 4.2 193.2 11.2 5.283 0.000 -

MeOH16 4.9 197.8 11.4 5.124 0.000 -

MeOHIT 4.8 202.6 11.7 4.452 0.000 -

MeOHIS 4.4 207.2 12.0 4.380 0.000 3.34 
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Table A.I 9. Experimental data for lactic acid recovery from model brotii by using 
Dowex MWA-1 

Feed - Model broth acidified by using Duolite C-464 
Eluant - 5% NH^OH 

Avg. Cum. vol. 
Fraction No. Volume Lactate Glucose pH Fraction No. Volume 

(mL) BV 
Lactate Glucose pH 

(mL) (mL) BV (mg/mL) (mg/mL) 
pH 

Feed 100 - - 75.117 8.345 2.84 

LI 5.5 2.8 0.2 0.000 0.000 5.99 

L2 5.5 8.3 0.5 0.000 0.000 11.07 

L3 5.5 13.8 0.8 0.001 0.587 12.65 

L4 5.4 19.2 1.1 0.442 8.707 12.50 

L5 5.3 24.6 1.4 5.919 10.260 10.75 

L6 5.4 29.9 1.7 8.325 9.442 8.60 

L7 5.2 35.2 2.0 27.647 9.232 3.50 

L8 5.2 40.4 2.3 63.470 8.762 2.98 

L9 5.2 45.6 2.6 72.303 8.204 2.88 

L10 5.2 50.8 2.9 74.048 8.107 2.87 

L11 5.2 56.0 3.2 74.442 8.088 -

LI 2 4.9 61.1 3.5 74.643 8.130 -

LI 3 5.0 66.0 3.8 75.189 8.190 2.86 
L14 5.0 71.0 4.1 77.640 8.490 -

LIS 5.0 76.0 4.4 76.821 8.416 2.86 

R1 9.2 83.1 4.8 74.269 7.843 2.80 

R2 9.1 92.3 5.3 38.047 2.949 2.50 

R3 9.0 101.3 5.9 15.192 0.277 2.31 

R4 9.1 110.4 6.4 7.418 0.040 2.46 

R5 9.0 119.4 6.9 4.428 0.021 2.58 

R6 9.1 128.5 7.4 3.160 0.002 2.66 

R7 9.0 137.5 7.9 2.378 0.000 2.72 

NH4OHI 5.4 144.7 8.4 2.266 0.000 2.74 

NH4OH2 5.1 150.0 8.7 13.910 0.000 4.52 

NH4OH3 5.1 155.1 9.0 75.427 0.000 5.38 

NH4OH4 5.2 160.2 9.3 113.116 0.000 7.39 

NH4OH5 5.2 165.4 9.6 12.907 0.000 10.54 
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NH40H6 5.2 170.6 9.9 1.254 0.000 11.48 

NH40H7 5.2 175.8 10.2 0.738 0.000 11.60 

NH40H8 4.8 180.8 10.5 0.728 0.000 11.66 

NH40H9 5.3 185.9 10.7 0.613 0.000 -

NH4OH10 5.2 191.1 11.0 0.517 0.000 11.71 

NH40H11 5.2 196.3 11.3 0.483 0.000 -
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Table A.20. Experimental data for lactic acid recovery from model broth by using 
Amberlite IRA-35 

Feed - Model broth acidified by using Duolite C-464 
Eluant - Methanol 

Fraction 
No. 

Volume 
(mL) 

Avg. Cum. vol. 
Lactate 
(mg/mL) 

Glucose 
(mg/mL) 

PH Fraction 
No. 

Volume 
(mL) mL BV 

Lactate 
(mg/mL) 

Glucose 
(mg/mL) 

PH 

Feed 49.5 - - 62.088 7.008 2.83 

LI 2.1 1.1 0.1 0.000 0.000 3.86 

L2 2.1 3.2 0.3 0.000 0.000 5.11 

L3 2.0 5.2 0.6 0.000 0.002 6.13 

L4 2.0 7.2 0.8 0.235 1.000 9.66 

L5 2.0 9.2 1.0 2.596 4.790 9.85 

L6 2.0 11.2 1.2 5.383 6.890 9.72 

L7 2.0 13.2 1.4 7.170 7.488 9.52 

L8 2.0 15.2 1.7 8.451 7.699 9.32 

L9 2.0 17.2 1.9 10.174 7.750 8.89 

L10 2.0 19.2 2.1 16.544 7.402 4.25 

L11 2.0 21.2 2.3 38.050 7.572 3.29 

L12 1.9 23.2 2.5 53.202 7.218 3.03 

L13 1.8 25.0 2.7 59.640 7.060 2.95 

L14 1.8 26.8 2.9 59.328 6.712 2.92 

L15 1.8 28.6 3.1 61.828 6.876 2.91 

L16 1.8 30.4 3.3 62.980 6.992 -

L17 1.9 32.3 3.5 60.304 6.664 2.90 

L18 1.9 34.2 3.7 61.056 6.752 -

LI 9 1.8 36.0 3.9 60.532 6.696 -

L20 1.8 37.8 4.1 62.656 6.928 2.90 

L21 1.8 39.6 4.3 64.140 7.112 -

L22 1.8 41.4 4.5 60.312 6.712 -

L23 1.8 43.2 4.7 63.164 7.016 -

L24 1.8 45.0 4.9 60.296 6.736 -

L25 1.9 46.9 5.1 64.032 7.136 2.89 

R1 5.1 50.4 5.5 62.416 6.968 2.87 

R2 4.9 55.4 6.0 42.256 3.516 2.38 
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Table A.21. Experimental data for broth pre-treatment by using activated carbon 
(Unheated broth) 

Fraction 
No. 

Volume 
(mL) 

Ave. Cum. vol. 
Lactate 
(mg/mL) 

Glucose 
(mg/mL) 

PH Fraction 
No. 

Volume 
(mL) mL BV 

Lactate 
(mg/mL) 

Glucose 
(mg/mL) 

PH 

Feed 246.2 - - 118.34 11.23 4.50 

1 6.4 3.2 0.0 0.00 0.00 5.98 

2 6.3 9.6 0.1 0.00 0.00 5.94 

3 6.3 15.9 0.2 6.53 0.00 8.10 

4 6.2 22.1 0.3 44.02 0.00 8.02 

5 6.0 28.2 0.4 73.32 0.00 7.76 

6 6.0 34.2 0.5 83.07 1.92 7.26 

7 6.0 40.2 0.6 85.03 3.65 6.09 

8 6.0 46.2 0.6 86.64 5.58 5.47 

9 6.0 52.2 0.7 87.05 6.02 5.15 

10 6.0 58.2 0.8 87.64 6.77 4.96 

11 5.9 64.2 0.9 91.28 7.73 4.83 

12 5.9 70.1 1.0 91.95 8.30 4.73 

13 5.9 76.0 1.1 92.87 9.25 4.67 

14 5.8 81.8 1.1 93.52 8.78 -

15 5.7 87.6 1.2 97.08 11.07 4.58 

16 5.8 93.3 1.3 96.04 9.62 -

17 5.8 99.1 1.4 97.98 9.56 -

18 5.8 104.9 1.5 98.44 9.52 4.50 

19 5.8 110.7 1.5 101.06 9.70 -

20 5.5 116.4 1.6 101.40 9.62 -

21 5.7 122.0 1.7 100.32 10.31 4.47 

22 5.8 127.7 1.8 103.19 10.06 -

23 5.8 133.5 1.9 104.80 9.94 -

24 5.7 139.3 1.9 105.20 10.44 -

25 5.5 144.9 2.0 105.61 9.47 4.42 

26 5.9 150.6 2.1 101.46 8.54 -

27 5.9 156.5 2.2 94.68 6.92 -

28 5.9 162.4 2.2 90.80 6.54 -

29 5.9 168.3 2.3 84.86 7.04 -

30 5.9 174.2 2.4 85.64 5.22 4.48 
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31 5.8 180.0 2.5 89.52 6.64 -

32 5.9 185.9 2.6 95.22 6.78 -

33 5.8 191.7 2.7 96.93 7.33 -

34 5.7 197.5 2.7 100.10 8.72 -

35 5.7 203.2 2.8 105.00 9.86 4.41 

36 5.7 208.9 2.9 105.88 9.48 -

37 5.7 214.6 3.0 105.86 9.78 -

38 5.6 220.2 3.1 106.42 10.24 -

39 5.7 225.9 3.1 107.16 9.28 -

40 5.7 231.6 3.2 109.46 10.67 4.39 

41 5.9 237.4 3.3 106.40 9.51 -

42 5.9 243.3 3.4 104.84 9.51 -
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Table A.22. Experimental data for broth pre-treatment by using activated carbon 
(Browned broth - pH 4.5) 

Fraction 
No. 

Volume 
(mL) 

Ave. Cum. vol. 
HLa 

(mg/mL) 
Glucose 
(mg/mL) 

pH Fraction 
No. 

Volume 
(mL) mL BV 

HLa 
(mg/mL) 

Glucose 
(mg/mL) 

pH 

1 5.6 2.8 0.04 0.00 0.00 5.91 

2 6.2 8.7 0.12 0.00 0.00 6.17 

3 6.2 14.9 0.21 6.10 0.00 8.11 

4 6.0 21.0 0.29 31.11 0.07 8.00 

5 6.1 27.1 0.37 53.30 0.36 7.89 

6 6.0 33.1 0.46 70.87 0.86 7.62 

7 6.1 39.2 0.54 75.34 1.42 7.13 

8 6.0 45.2 0.63 79.33 2.22 6.20 

9 6.1 51.3 0.71 84.87 3.16 5.62 

10 6.0 57.3 0.79 86.85 3.99 5.32 

11 6.0 63.3 0.88 88.47 4.64 5.11 

12 6.0 69.3 0.96 84.88 4.84 4.97 

13 6.0 75.3 1.04 88.04 5.27 4.86 

14 6.0 81.3 1.13 83.45 5.16 4.77 

15 5.9 87.3 1.21 87.61 5.98 4.70 

16 5.9 93.2 1.29 83.07 5.43 4.65 

17 5.9 99.1 1.37 88.39 5.74 4.64 

18 5.9 105.0 1.45 95.18 7.02 -

19 5.8 110.8 1.54 92.60 6.86 -

20 5.8 116.6 1.62 94.22 7.05 4.54 

21 5.8 122.4 1.70 94.52 7.08 -

22 5.8 128.2 1.78 94.00 7.00 -

23 5.7 134.0 1.86 100.53 7.46 4.48 

24 5.7 139.7 1.94 102.70 7.66 -

25 5.8 145.4 2.01 103.96 7.67 -

26 5.8 151.2 2.10 104.95 7.70 4.44 

27 5.8 157.0 2.18 101.90 7.38 -

28 5.7 162.8 2.26 102.16 7.42 -

29 5.5 168.4 2.33 109.12 8.06 4.38 
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30 5.2 173.7 2.41 108.03 7.18 -

31 4.5 178.6 2.47 92.12 5.92 -

32 5.1 183.4 2.54 103.16 6.34 -

33 3.0 187.4 2.60 106.02 6.16 4.54 
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Table A.23. Experimental data for broth pre-treatment by using activated carbon 
(Browned broth - pH 10) 

Ave. Cum. vol. Lactic 
Fraction Volume acid Glucose pH Fraction Volume 

mL BV 
acid Glucose pH 

No. (mL) mL BV (mg/mL) (mg/mL) 
pH 

1 6.1 3.1 0.04 0.00 0.00 5.74 
2 6.3 9.3 0.13 0.84 0.01 5.58 
3 6.3 15.6 0.22 5.98 0.01 7.82 
4 6.2 21.8 0.30 49.08 0.02 7.83 
5 6.0 27.9 0.39 77.63 0.02 7.76 
6 6.0 33.9 0.47 95.22 0.03 7.69 
7 6.0 39.9 0.55 100.19 0.15 7.59 
8 6.0 45.9 0.64 101.99 0.26 7.51 
9 6.0 51.9 0.72 101.50 0.44 7.43 

10 6.0 57.9 0.80 99.50 0.65 7.31 
11 5.9 63.9 0.88 96.49 0.90 7.18 
12 5.9 69.8 0.97 96.36 1.18 7.03 
13 6.0 75.7 1.05 95.68 1.44 6.89 
14 5.9 81.7 1.13 98.50 1.84 6.70 
15 5.9 87.6 1.21 95.33 2.04 6.52 
16 6.0 93.5 1.30 96.66 2.32 6.34 
17 5.9 99.5 1.38 96.36 2.51 6.18 
18 6.0 105.4 1.46 96.73 2.69 6.04 
19 6.0 111.4 1.54 97.10 2.86 5.92 
20 6.0 117.4 1.63 100.17 3.07 5.82 
21 6.0 123.4 1.71 95.80 3.04 5.74 
22 6.0 129.4 1.79 101.26 3.28 5.66 
23 6.0 135.4 1.88 101.59 3.36 -

24 6.0 141.4 1.96 98.27 3.28 -

25 6.0 147.4 2.04 98.88 3.36 5.53 
26 6.0 153.4 2.13 100.76 3.46 -

27 6.0 159.4 2.21 104.32 3.58 -

28 6.0 165.4 2.29 103.47 3.56 5.43 
29 6.0 171.4 2.38 106.16 3.72 -

30 6.0 177.4 2.46 102.92 3.62 -

31 5.8 183.3 2.54 106.96 3.80 5.36 
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Table A.24. Experimental data for broth pre-treatment by using Amberlite XAD 16 
(Unheated broth) 

Ave. Cum. vol. 
Fraction Volume Lactate Glucose PH Fraction Volume 

BV mL 
Lactate Glucose PH 

No. (mL) BV mL (mg/mL) (mg/mL) 
PH 

Feed 2.2 - - 118.34 11.23 4.35 

1 0.1 1.0 0.00 0.00 6.46 

2 2.2 0.2 3.3 0.00 0.00 -

3 2.2 0.3 5.5 0.00 0.00 -

4 2.2 0.4 7.7 0.00 0.00 6.14 

5 2.2 0.6 9.9 1.21 0.26 -

6 2.2 0.7 12.1 16.26 1.95 6.70 

7 2.2 0.8 14.3 53.98 5.37 6.52 

8 2.2 1.0 16.5 79.64 7.68 6.03 

9 2.2 1.1 18.7 93.35 9.04 5.41 

10 2.2 1.2 20.9 101.20 9.75 4.93 

11 2.2 1.3 23.1 - - -

12 2.2 1.5 25.3 115.88 10.284 4.50 

13 2.2 1.6 27.5 - - -

14 2.2 1.7 29.7 - - -

15 2.2 1.8 31.9 122.46 10.200 4.37 

16 2.2 2.0 34.1 - - -

17 2.2 2.1 36.3 - - 4.36 

18 2.2 2.2 38.5 - - -

19 2.2 2.4 40.7 - - -

20 2.2 2.5 42.9 122.26 10.210 4.35 
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Table A.25. Experimental data for broth pre-treatment by using Diaion HP-2MG 
(Unhealed broth) 

Fraction 
No. 

Volume 
(mL) 

Ave. Cum. vol. 
Lactate 
(mg/mL) 

Glucose 
(mg/mL) 

pH Fraction 
No. 

Volume 
(mL) (mL) BV 

Lactate 
(mg/mL) 

Glucose 
(mg/mL) 

pH 

Feed - - - 118.34 11.23 4.35 
1 2.5 1.3 0.1 0.00 0.00 6.73 
2 2.5 3.8 0.2 0.00 0.00 6.63 
3 2.5 6.3 0.4 0.00 0.00 6.63 
4 2.5 8.8 0.5 0.64 0.05 6.74 
5 2.5 11.3 0.7 9.30 0.97 6.35 
6 2.5 13.8 0.9 53.22 4.91 6.04 
7 2.5 16.3 1.0 89.66 8.25 5.46 
8 2.4 18.7 1.2 104.22 9.63 4.82 
9 2.5 21.2 1.3 113.46 10.00 4.50 

10 2.5 23.7 1.5 114.12 9.68 4.35 
11 2.4 26.1 1.6 112.72 9.42 4.32 
12 2.4 28.5 1.8 117.94 9.84 -

13 2.4 30.9 1.9 120.06 9.98 -

14 2.4 33.3 2.1 119.65 9.90 -

15 2.4 35.7 2.2 118.36 9.83 4.31 
16 2.4 38.1 2.4 - - -

17 2.4 40.5 2.5 - - -

18 2.4 42.9 2.7 - - -

19 2.4 45.3 2.8 - - -

20 2.4 47.7 3.0 119.19 9.86 4.31 
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Table A26. Experimental data for broth pre-treatment by using Duolite S-761 
(Unheated broth) 

Fraction 
No. 

Volume 
(mL) 

Ave. Cum. vol. 
Lactate 
(mg/mL) 

Glucose 
(mg/mL) 

PH Fraction 
No. 

Volume 
(mL) mL BV 

Lactate 
(mg/mL) 

Glucose 
(mg/mL) 

PH 

Feed - - - 118.34 11.23 4.35 
1 2.5 1.3 0.1 0.00 0.00 9.04 
2 2.5 3.8 0.2 0.00 0.00 8.92 
3 2.5 6.3 0.4 0.00 0.00 8.88 
4 2.5 8.8 0.5 0.32 0.02 8.06 
5 2.5 11.3 0.7 9.79 0.97 6.95 
6 2.5 13.8 0.9 55.15 5.15 6.31 
7 2.5 16.3 1.0 96.26 8.81 5.24 
8 2.4 18.7 1.2 111.04 9.86 4.63 
9 2.4 21.1 1.3 114.98 9.86 4.41 

10 2.3 23.5 1.5 119.89 10.11 4.33 

11 2.3 25.8 1.6 114.02 9.54 -

12 2.4 28.1 1.7 120.87 10.14 4.31 
13 2.3 30.5 1.9 118.52 9.87 -

14 2.4 32.8 2.0 120.87 10.04 -

15 2.4 35.2 2.2 113.80 9.50 4.31 
16 2.4 37.6 2.3 - - -

17 2.3 40.0 2.5 - - -

18 2.3 42.3 2.6 - - -

19 2.3 44.6 2.8 - - -

20 2.3 46.9 2.9 118.44 9.86 4.31 
21 2.3 49.2 3.1 - - -

22 2.3 51.5 3.2 - - -

23 2.2 53.7 3.3 - - -

24 2.2 55.9 3.5 - - -

25 2.3 58.2 3.6 119.79 9.98 4.31 

26 2.4 60.5 3.8 - - -

27 2.2 62.8 3.9 - - -

28 2.4 65.1 4.0 - - -

29 2.3 67.5 4.2 - - -

30 2.4 69.8 4.3 117.08 9.66 4.31 
31 2.3 72.2 4.5 - - -

32 2.3 74.5 4.6 - - -
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33 2.2 76.7 4.8 - - -

34 2.3 79.0 4.9 - - -

35 2.4 81.3 5.0 117.90 9.78 4.31 
36 2.4 83.7 5.2 - - -

37 2.3 86.1 5.3 - - -

38 2.3 88.4 5.5 - - -

39 2.3 90.7 5.6 - - -

40 2.4 93.0 5.8 118.48 9.80 4.31 
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